Last updated: 2022-08-25
Checks: 7 0
Knit directory: rotation2/
This reproducible R Markdown analysis was created with workflowr (version 1.7.0). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.
Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.
Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.
The command set.seed(20220607)
was run prior to running
the code in the R Markdown file. Setting a seed ensures that any results
that rely on randomness, e.g. subsampling or permutations, are
reproducible.
Great job! Recording the operating system, R version, and package versions is critical for reproducibility.
Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.
Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.
Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.
The results in this page were generated with repository version 4d8f9d5. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.
Note that you need to be careful to ensure that all relevant files for
the analysis have been committed to Git prior to generating the results
(you can use wflow_publish
or
wflow_git_commit
). workflowr only checks the R Markdown
file, but you know if there are other scripts or data files that it
depends on. Below is the status of the Git repository when the results
were generated:
Unstaged changes:
Modified: .RData
Modified: .Rhistory
Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.
These are the previous versions of the repository in which changes were
made to the R Markdown (analysis/project_1.Rmd
) and HTML
(docs/project_1.html
) files. If you’ve configured a remote
Git repository (see ?wflow_git_remote
), click on the
hyperlinks in the table below to view the files as they were in that
past version.
File | Version | Author | Date | Message |
---|---|---|---|---|
html | 268c781 | chenh19 | 2022-08-25 | Build site. |
html | d5675d8 | chenh19 | 2022-08-25 | Build site. |
html | 6f9b2d0 | chenh19 | 2022-08-25 | Build site. |
html | eb7f6e2 | chenh19 | 2022-08-25 | Build site. |
html | 06d8f5b | chenh19 | 2022-08-25 | Build site. |
html | 481c95e | chenh19 | 2022-08-25 | Build site. |
html | 4c40591 | chenh19 | 2022-08-25 | update |
html | 210ce87 | chenh19 | 2022-08-25 | Build site. |
html | 7126807 | chenh19 | 2022-08-25 | Build site. |
html | e576eee | chenh19 | 2022-08-25 | Build site. |
html | 3b152ba | chenh19 | 2022-08-25 | Build site. |
html | abd8577 | chenh19 | 2022-08-25 | Build site. |
html | fb0804c | chenh19 | 2022-08-25 | Build site. |
html | 46c0eee | chenh19 | 2022-08-25 | Build site. |
html | 4bcd287 | Hang Chen | 2022-08-11 | Build site. |
html | 316e143 | Hang Chen | 2022-08-11 | Build site. |
html | 2ecff7a | Hang Chen | 2022-08-11 | Build site. |
html | 1a7329a | Hang Chen | 2022-08-11 | Build site. |
html | d98b8ed | Hang Chen | 2022-08-10 | Build site. |
html | afbc7f7 | chenh19 | 2022-08-09 | Build site. |
html | f3ddb60 | chenh19 | 2022-08-09 | Build site. |
html | aeeaff4 | chenh19 | 2022-08-09 | Build site. |
html | faa4371 | chenh19 | 2022-08-09 | Build site. |
html | 40d7285 | chenh19 | 2022-08-09 | Build site. |
html | 51ff922 | chenh19 | 2022-08-09 | Build site. |
html | 60bb670 | chenh19 | 2022-08-09 | Build site. |
html | 5035de6 | chenh19 | 2022-08-09 | Build site. |
html | c710b98 | chenh19 | 2022-08-09 | Build site. |
html | 9c8a125 | chenh19 | 2022-08-09 | Build site. |
html | 759a524 | chenh19 | 2022-08-09 | Build site. |
html | 0137730 | chenh19 | 2022-08-09 | Build site. |
html | 306629d | chenh19 | 2022-08-09 | Build site. |
html | a2f14fc | chenh19 | 2022-08-09 | Build site. |
html | afe9e5e | chenh19 | 2022-08-09 | Build site. |
html | 7f87abe | chenh19 | 2022-08-09 | Build site. |
html | f7a30e6 | chenh19 | 2022-08-08 | Build site. |
html | ae6dc22 | chenh19 | 2022-08-08 | Build site. |
html | 31345e3 | chenh19 | 2022-08-08 | Build site. |
Rmd | 14daeb5 | chenh19 | 2022-08-08 | wflow_publish("./analysis/*.Rmd") |
html | ab573d7 | chenh19 | 2022-08-08 | Build site. |
html | 82d0b8a | chenh19 | 2022-08-08 | Build site. |
html | 63022aa | chenh19 | 2022-08-08 | Build site. |
html | b4ec414 | chenh19 | 2022-08-08 | Build site. |
html | fb4fa31 | chenh19 | 2022-08-08 | Build site. |
html | 03df33f | chenh19 | 2022-08-08 | Build site. |
html | ec5763a | chenh19 | 2022-08-08 | Build site. |
Rmd | d6b5331 | chenh19 | 2022-08-08 | wflow_publish("./analysis/*.Rmd") |
html | 870ec95 | chenh19 | 2022-08-08 | Build site. |
Rmd | 26c6105 | chenh19 | 2022-08-08 | wflow_publish("./analysis/*.Rmd") |
html | 4df0f61 | chenh19 | 2022-08-08 | Build site. |
html | 8bad269 | chenh19 | 2022-08-08 | Build site. |
Rmd | e769869 | chenh19 | 2022-08-08 | wflow_publish("./analysis/*.Rmd") |
html | 6e10041 | chenh19 | 2022-08-08 | Build site. |
Rmd | e57b4ef | chenh19 | 2022-08-08 | wflow_publish("./analysis/*.Rmd") |
html | b045b81 | chenh19 | 2022-08-08 | Build site. |
Rmd | 26a8d3b | chenh19 | 2022-08-08 | wflow_publish("./analysis/*.Rmd") |
html | e22ab6b | chenh19 | 2022-08-08 | Build site. |
Rmd | b57b687 | chenh19 | 2022-08-08 | wflow_publish("./analysis/*.Rmd") |
html | 87b3f9d | chenh19 | 2022-08-08 | Build site. |
Rmd | 9a06a06 | chenh19 | 2022-08-08 | update |
html | 78b6bd6 | chenh19 | 2022-08-08 | Build site. |
html | 60fabb8 | Hang Chen | 2022-08-08 | Build site. |
html | cee42b8 | Hang Chen | 2022-08-05 | Build site. |
html | 6927e45 | Hang Chen | 2022-08-04 | Build site. |
html | 551a34f | Hang Chen | 2022-08-04 | Build site. |
html | 80908a7 | Hang Chen | 2022-08-04 | Build site. |
html | 2623d6b | Hang Chen | 2022-08-04 | Build site. |
html | e9d9966 | Hang Chen | 2022-08-04 | Build site. |
html | 57d96a8 | Hang Chen | 2022-08-04 | update |
Rmd | 05b3310 | Hang Chen | 2022-08-04 | update |
html | 05b3310 | Hang Chen | 2022-08-04 | update |
html | 37d15c9 | chenh19 | 2022-07-19 | Build site. |
html | 8f6816e | chenh19 | 2022-07-19 | Build site. |
html | 4a94b94 | chenh19 | 2022-07-19 | Build site. |
Rmd | a18fc1f | chenh19 | 2022-07-19 | wflow_publish("./analysis/*.Rmd") |
html | 870115f | chenh19 | 2022-07-19 | Build site. |
Rmd | 6307f5c | chenh19 | 2022-07-19 | wflow_publish("./analysis/*.Rmd") |
html | 9241fe6 | chenh19 | 2022-07-08 | Build site. |
Rmd | abd8a0c | chenh19 | 2022-07-08 | wflow_publish("./analysis/*.Rmd") |
html | 0a7633b | chenh19 | 2022-07-07 | Build site. |
Rmd | 06d53d1 | chenh19 | 2022-07-07 | wflow_publish("./analysis/*.Rmd") |
html | 63535ad | chenh19 | 2022-07-07 | Build site. |
Rmd | fe2a82b | chenh19 | 2022-07-07 | wflow_publish("./analysis/*.Rmd") |
Rmd | 9898acd | chenh19 | 2022-07-07 | update |
html | feb5923 | chenh19 | 2022-07-07 | Build site. |
Rmd | 9eae283 | chenh19 | 2022-07-07 | wflow_publish("./analysis/*.Rmd") |
html | c849244 | chenh19 | 2022-07-07 | Build site. |
Rmd | 29eb161 | chenh19 | 2022-07-07 | wflow_publish("./analysis/*.Rmd") |
html | 7ab5d71 | chenh19 | 2022-07-07 | Build site. |
Rmd | 2baffc8 | chenh19 | 2022-07-07 | wflow_publish("./analysis/*.Rmd") |
html | 625e7ca | chenh19 | 2022-07-07 | Build site. |
Rmd | bb3e1aa | chenh19 | 2022-07-07 | wflow_publish("./analysis/*.Rmd") |
html | 0e1d92d | chenh19 | 2022-07-07 | Build site. |
Rmd | 138b4fe | chenh19 | 2022-07-07 | wflow_publish("./analysis/*.Rmd") |
html | 24d6bcf | chenh19 | 2022-07-07 | Build site. |
Rmd | 941e24b | chenh19 | 2022-07-07 | wflow_publish("./analysis/*.Rmd") |
html | 3a14766 | chenh19 | 2022-07-07 | Build site. |
Rmd | d425ac9 | chenh19 | 2022-07-07 | wflow_publish("./analysis/*.Rmd") |
html | ca77db2 | chenh19 | 2022-07-07 | Build site. |
Rmd | 608cdf8 | chenh19 | 2022-07-07 | wflow_publish("./analysis/*.Rmd") |
Rmd | c639389 | chenh19 | 2022-07-06 | update |
html | e0cb7a2 | chenh19 | 2022-06-28 | Build site. |
Rmd | ac33ff0 | chenh19 | 2022-06-28 | wflow_publish("./analysis/*.Rmd") |
html | bf05c98 | chenh19 | 2022-06-28 | Build site. |
Rmd | 1c8bb9a | chenh19 | 2022-06-28 | wflow_publish("./analysis/*.Rmd") |
html | 7cfb685 | chenh19 | 2022-06-28 | Build site. |
Rmd | 82fce8f | chenh19 | 2022-06-28 | wflow_publish("./analysis/*.Rmd") |
html | 43dad9c | chenh19 | 2022-06-28 | Build site. |
Rmd | 20718e9 | chenh19 | 2022-06-28 | wflow_publish("./analysis/*.Rmd") |
html | 7aa3172 | chenh19 | 2022-06-28 | Build site. |
Rmd | e0425d8 | chenh19 | 2022-06-28 | wflow_publish("./analysis/*.Rmd") |
html | 2254608 | chenh19 | 2022-06-28 | Build site. |
Rmd | 754150e | chenh19 | 2022-06-28 | wflow_publish("./analysis/*.Rmd") |
html | 968a4b6 | chenh19 | 2022-06-23 | Build site. |
html | 229f924 | chenh19 | 2022-06-23 | Build site. |
Rmd | c7847bd | chenh19 | 2022-06-23 | wflow_publish("./analysis/*.Rmd") |
html | 9750134 | chenh19 | 2022-06-23 | Build site. |
Rmd | 0064ff3 | chenh19 | 2022-06-23 | wflow_publish("./analysis/*.Rmd") |
html | 4b38bf6 | chenh19 | 2022-06-23 | Build site. |
Rmd | 4eb11c9 | chenh19 | 2022-06-23 | wflow_publish("./analysis/*.Rmd") |
html | 8a7980d | chenh19 | 2022-06-23 | Build site. |
html | 3e1478e | chenh19 | 2022-06-22 | Build site. |
html | 5258612 | chenh19 | 2022-06-22 | Build site. |
Rmd | ecfd58d | chenh19 | 2022-06-22 | wflow_publish("./analysis/*.Rmd") |
html | 2382868 | chenh19 | 2022-06-22 | Build site. |
Rmd | 694470f | chenh19 | 2022-06-22 | wflow_publish("./analysis/*.Rmd") |
html | 1144127 | chenh19 | 2022-06-22 | Build site. |
html | da2c0fe | chenh19 | 2022-06-21 | Build site. |
html | 8aa5960 | chenh19 | 2022-06-21 | Build site. |
Rmd | 3dea9b1 | chenh19 | 2022-06-21 | wflow_publish("./analysis/*.Rmd") |
html | 6783fa3 | chenh19 | 2022-06-21 | Build site. |
Rmd | 6699b8f | chenh19 | 2022-06-21 | wflow_publish("./analysis/*.Rmd") |
html | d9be701 | chenh19 | 2022-06-21 | Build site. |
Rmd | f93179d | chenh19 | 2022-06-21 | wflow_publish("./analysis/*.Rmd") |
html | 82e6e50 | chenh19 | 2022-06-21 | Build site. |
Rmd | f753baa | chenh19 | 2022-06-21 | wflow_publish("./analysis/*.Rmd") |
html | d376ad0 | chenh19 | 2022-06-21 | Build site. |
Rmd | 4a9db6a | chenh19 | 2022-06-21 | wflow_publish("./analysis/*.Rmd") |
html | 325a212 | chenh19 | 2022-06-21 | Build site. |
Rmd | d54cc77 | chenh19 | 2022-06-21 | wflow_publish("./analysis/*.Rmd") |
html | e14c55c | chenh19 | 2022-06-21 | Build site. |
Rmd | 2ab041a | chenh19 | 2022-06-21 | wflow_publish("./analysis/*.Rmd") |
html | f971bbd | chenh19 | 2022-06-21 | Build site. |
html | dca882f | chenh19 | 2022-06-21 | Build site. |
html | 3a80eaf | chenh19 | 2022-06-21 | Build site. |
Rmd | b6fb1d2 | chenh19 | 2022-06-21 | wflow_publish("./analysis/*.Rmd") |
html | 33829a5 | chenh19 | 2022-06-21 | Build site. |
Rmd | a949aec | chenh19 | 2022-06-21 | wflow_publish("./analysis/*.Rmd") |
html | 5b446cf | chenh19 | 2022-06-21 | Build site. |
Rmd | c4ad45d | chenh19 | 2022-06-21 | wflow_publish("./analysis/*.Rmd") |
html | 28a06ee | chenh19 | 2022-06-21 | Build site. |
Rmd | 53f2292 | chenh19 | 2022-06-21 | wflow_publish("./analysis/*.Rmd") |
html | d5b4ff0 | chenh19 | 2022-06-21 | Build site. |
Rmd | e982ac7 | chenh19 | 2022-06-21 | wflow_publish("./analysis/*.Rmd") |
html | 16400a7 | chenh19 | 2022-06-21 | Build site. |
Rmd | d6aa5b2 | chenh19 | 2022-06-21 | wflow_publish("./analysis/*.Rmd") |
html | a324166 | chenh19 | 2022-06-21 | Build site. |
Rmd | ab8cbc3 | chenh19 | 2022-06-21 | wflow_publish("./analysis/*.Rmd") |
html | 27a4d51 | chenh19 | 2022-06-21 | Build site. |
Rmd | 624e791 | chenh19 | 2022-06-21 | wflow_publish("./analysis/*.Rmd") |
html | f765024 | chenh19 | 2022-06-21 | Build site. |
html | bc55dbb | chenh19 | 2022-06-21 | Build site. |
Rmd | 8b66c3b | chenh19 | 2022-06-21 | update |
html | b3b7ed6 | chenh19 | 2022-06-21 | Build site. |
Rmd | 405116a | chenh19 | 2022-06-21 | update |
html | 405d57e | chenh19 | 2022-06-21 | Build site. |
Rmd | bbbaab0 | chenh19 | 2022-06-21 | wflow_publish("./analysis/*.Rmd") |
html | c10a1a8 | chenh19 | 2022-06-21 | Build site. |
Rmd | a8f7999 | chenh19 | 2022-06-21 | wflow_publish("./analysis/*.Rmd") |
html | 2443e38 | chenh19 | 2022-06-21 | Build site. |
Rmd | 8e0c8ad | chenh19 | 2022-06-21 | wflow_publish("./analysis/*.Rmd") |
html | 5d192d2 | chenh19 | 2022-06-21 | Build site. |
Rmd | 356550c | chenh19 | 2022-06-21 | wflow_publish("./analysis/*.Rmd") |
html | 21e9501 | chenh19 | 2022-06-21 | Build site. |
Rmd | 4a8f7ee | chenh19 | 2022-06-21 | wflow_publish("./analysis/*.Rmd") |
html | b002776 | chenh19 | 2022-06-20 | Build site. |
Rmd | 6d78198 | chenh19 | 2022-06-20 | wflow_publish("./analysis/*.Rmd") |
Rmd | 0e1817a | chenh19 | 2022-06-19 | update |
html | 6211c60 | chenh19 | 2022-06-15 | Build site. |
Rmd | 46e8cc3 | chenh19 | 2022-06-15 | wflow_publish("./analysis/*.Rmd") |
html | 0da18e2 | chenh19 | 2022-06-15 | Build site. |
Rmd | d999122 | chenh19 | 2022-06-15 | wflow_publish("./analysis/*.Rmd") |
html | 0aff555 | chenh19 | 2022-06-15 | Build site. |
Rmd | eda2d56 | chenh19 | 2022-06-15 | wflow_publish("./analysis/*.Rmd") |
html | a4e1e73 | chenh19 | 2022-06-15 | Build site. |
Rmd | 7229c17 | chenh19 | 2022-06-15 | wflow_publish("./analysis/*.Rmd") |
html | f0e98f9 | chenh19 | 2022-06-14 | Build site. |
Rmd | e0aa022 | chenh19 | 2022-06-14 | wflow_publish("./analysis/*.Rmd") |
html | eafa16b | chenh19 | 2022-06-14 | Build site. |
Rmd | 69b29f1 | chenh19 | 2022-06-14 | wflow_publish("./analysis/*.Rmd") |
html | dfd60ce | chenh19 | 2022-06-14 | Build site. |
Rmd | 49f1922 | chenh19 | 2022-06-14 | wflow_publish("./analysis/*.Rmd") |
html | fd7271e | chenh19 | 2022-06-14 | Build site. |
html | 1b4d12e | chenh19 | 2022-06-14 | Build site. |
html | a6c402d | chenh19 | 2022-06-14 | Build site. |
html | cedad99 | chenh19 | 2022-06-14 | Build site. |
Rmd | 6b3f021 | chenh19 | 2022-06-14 | wflow_publish("analysis/*.Rmd") |
html | e3b9788 | chenh19 | 2022-06-14 | Build site. |
html | aed5eed | chenh19 | 2022-06-14 | Build site. |
Rmd | c552123 | chenh19 | 2022-06-14 | wflow_publish("analysis/*.Rmd") |
html | 45bb6ed | chenh19 | 2022-06-14 | Build site. |
Rmd | 81fdf42 | chenh19 | 2022-06-14 | wflow_publish("analysis/*.Rmd") |
html | c23765a | chenh19 | 2022-06-14 | Build site. |
html | b5fb71c | chenh19 | 2022-06-14 | Build site. |
Rmd | 10f6641 | chenh19 | 2022-06-14 | wflow_publish("analysis/*.Rmd") |
html | 152325b | chenh19 | 2022-06-14 | Build site. |
Rmd | 1739dd9 | chenh19 | 2022-06-14 | wflow_publish("analysis/*.Rmd") |
html | 543ef4c | chenh19 | 2022-06-14 | Build site. |
html | 9b6cb27 | chenh19 | 2022-06-14 | Build site. |
Rmd | d8908c0 | chenh19 | 2022-06-14 | wflow_publish("analysis/*.Rmd") |
html | 8674c8a | chenh19 | 2022-06-14 | Build site. |
Rmd | 2972ce6 | chenh19 | 2022-06-14 | wflow_publish("analysis/*.Rmd") |
html | ada4068 | chenh19 | 2022-06-14 | Build site. |
Rmd | 7c5402e | chenh19 | 2022-06-14 | wflow_publish("analysis/*.Rmd") |
html | 0d08121 | chenh19 | 2022-06-14 | Build site. |
Rmd | 6226526 | chenh19 | 2022-06-14 | wflow_publish("analysis/*.Rmd") |
html | dd2046d | chenh19 | 2022-06-14 | Build site. |
Rmd | 71f5d04 | chenh19 | 2022-06-14 | wflow_publish("analysis/*.Rmd") |
html | 2c4cab1 | chenh19 | 2022-06-14 | Build site. |
Rmd | 6e73c04 | chenh19 | 2022-06-14 | wflow_publish("analysis/*.Rmd") |
html | d46eaab | chenh19 | 2022-06-14 | Build site. |
Rmd | be56d9d | chenh19 | 2022-06-14 | wflow_publish("analysis/*.Rmd") |
html | 02a0c26 | chenh19 | 2022-06-14 | Build site. |
Rmd | e2c15c0 | chenh19 | 2022-06-14 | wflow_publish("analysis/*.Rmd") |
html | abad46e | chenh19 | 2022-06-14 | Build site. |
Rmd | 68948e3 | chenh19 | 2022-06-14 | wflow_publish("analysis/*.Rmd") |
html | 741027b | chenh19 | 2022-06-14 | Build site. |
Rmd | 065d7e9 | chenh19 | 2022-06-14 | wflow_publish("analysis/*.Rmd") |
html | bb15812 | chenh19 | 2022-06-14 | Build site. |
Rmd | b6e0993 | chenh19 | 2022-06-14 | wflow_publish("analysis/*.Rmd") |
html | 93a27ae | chenh19 | 2022-06-14 | Build site. |
Rmd | b4a7331 | chenh19 | 2022-06-14 | wflow_publish("analysis/*.Rmd") |
html | 27121a9 | chenh19 | 2022-06-14 | Build site. |
Rmd | fce1ffd | chenh19 | 2022-06-14 | wflow_publish("analysis/*.Rmd") |
html | 44517c1 | chenh19 | 2022-06-13 | Build site. |
Rmd | cc6a40a | chenh19 | 2022-06-13 | wflow_publish("analysis/*.Rmd") |
html | da08f11 | chenh19 | 2022-06-13 | Build site. |
Rmd | 05ccc35 | chenh19 | 2022-06-13 | wflow_publish("analysis/*.Rmd") |
html | 572f6ba | chenh19 | 2022-06-13 | Build site. |
html | b8870d3 | chenh19 | 2022-06-13 | Build site. |
html | 719925e | chenh19 | 2022-06-13 | Build site. |
html | e7541fa | chenh19 | 2022-06-13 | Build site. |
html | 9d9615d | chenh19 | 2022-06-13 | Build site. |
Rmd | 04feaa7 | chenh19 | 2022-06-13 | wflow_publish("analysis/*.Rmd") |
html | bbd8978 | chenh19 | 2022-06-13 | Build site. |
Rmd | 0ec2bfa | chenh19 | 2022-06-13 | wflow_publish("analysis/*.Rmd") |
html | e5a5b52 | chenh19 | 2022-06-13 | Build site. |
Rmd | c43ae1f | chenh19 | 2022-06-13 | wflow_publish("analysis/*.Rmd") |
html | 4d8bd72 | chenh19 | 2022-06-13 | Build site. |
html | 3373521 | chenh19 | 2022-06-13 | Build site. |
html | af21ea8 | chenh19 | 2022-06-13 | Build site. |
Rmd | 6e56d75 | chenh19 | 2022-06-13 | wflow_publish("analysis/*.Rmd") |
html | f653f7b | chenh19 | 2022-06-13 | Build site. |
Rmd | 2723e7f | chenh19 | 2022-06-13 | wflow_publish("analysis/*.Rmd") |
html | d69c892 | chenh19 | 2022-06-13 | Build site. |
html | 34d877d | chenh19 | 2022-06-13 | Build site. |
html | e72400b | chenh19 | 2022-06-13 | Build site. |
html | c411223 | chenh19 | 2022-06-13 | Build site. |
html | 1daccd2 | chenh19 | 2022-06-13 | Build site. |
Rmd | 63f46d2 | chenh19 | 2022-06-13 | wflow_publish("analysis/*.Rmd") |
html | 26adb45 | chenh19 | 2022-06-13 | Build site. |
html | a6022a8 | chenh19 | 2022-06-13 | Build site. |
Rmd | 1215832 | chenh19 | 2022-06-13 | wflow_publish("analysis/*.Rmd") |
html | 9abc4b8 | chenh19 | 2022-06-13 | Build site. |
Rmd | 7efcfe0 | chenh19 | 2022-06-13 | wflow_publish("analysis/*.Rmd") |
html | f18d385 | chenh19 | 2022-06-13 | Build site. |
Rmd | a7c1ce0 | chenh19 | 2022-06-13 | wflow_publish("analysis/*.Rmd") |
html | e991f56 | chenh19 | 2022-06-13 | Build site. |
html | 3c9b1d9 | chenh19 | 2022-06-13 | Build site. |
Rmd | ae1553a | chenh19 | 2022-06-13 | wflow_publish("analysis/*.Rmd") |
html | 34e0d02 | chenh19 | 2022-06-13 | Build site. |
Rmd | e69aa83 | chenh19 | 2022-06-13 | wflow_publish("analysis/*.Rmd") |
html | 9be31af | chenh19 | 2022-06-13 | Build site. |
Rmd | ead84c2 | chenh19 | 2022-06-13 | wflow_publish("analysis/*.Rmd") |
html | 0f41de8 | chenh19 | 2022-06-13 | Build site. |
html | 31ad035 | chenh19 | 2022-06-13 | Build site. |
html | bdf3b44 | chenh19 | 2022-06-13 | Build site. |
html | 8d0890c | chenh19 | 2022-06-13 | Build site. |
Rmd | 26f455b | chenh19 | 2022-06-13 | update |
html | 26f455b | chenh19 | 2022-06-13 | update |
Yalamanchili et al. 2017: RNA-seq analysis pipeline
Protocol-1 (differential expression of genes):
Protocol-2 (differential usage of isoforms):
Protocol-3 (crypic splicing):
Luecken
et al. 2019: RNA-seq analysis pipeline
Supplementary
code
Some key ideas:
Some data processing steps and results:
reference mapping?
read more on the official
websiteI'll come back later
Note:
Code: download.sh
Code: fastqc.sh
SRR14141135:
SRR14141136:
SRR14141137:
SRR14141138:
SRR14141139:
SRR14141140:
SRR14141141:
SRR14141142:
SRR14141143:
SRR14141144:
SRR14141145:
SRR14141146:
A brief summary:
26bp
or 57bp
(trimmed?)30-35x
~40 bp
)Code: pip3-kb.sh
Code: anaconda_kallisto.sh
Code: seurat.sh
Code: overview.R
Note: about sparse
matrix
The [Expression] matrix has:
- 35,606 rows/genes/targets
- 686,612 columns/barcodes/cells
- 24,447,506,872 values in total
- 82,507,471 values that are non-zero
- 50,421,358 values that are 1
- 32,086,113 values that are bigger than 1
- 3,370,699 values that are bigger than 10
- 259,734 values that are bigger than 100
- 2,515 values that are bigger than 1,000
- 0 values that are bigger than 10,000
- 0 values that are bigger than 100,000
The [gRNA] matrix has:
- 210 rows/genes/targets
- 137,347 columns/barcodes/cells
- 28,842,870 values in total
- 2,506,474 values that are non-zero
- 1,510,919 values that are 1
- 995,555 values that are bigger than 1
- 121,554 values that are bigger than 10
- 41,071 values that are bigger than 100
- 2,232 values that are bigger than 1,000
- 20 values that are bigger than 10,000
- 0 values that are bigger than 100,000
The [Hashtag] matrix has:
- 4 rows/genes/targets
- 410,228 columns/barcodes/cells
- 1,640,912 values in total
- 739,820 values that are non-zero
- 409,830 values that are 1
- 329,990 values that are bigger than 1
- 218,280 values that are bigger than 10
- 8,155 values that are bigger than 100
- 282 values that are bigger than 1,000
- 46 values that are bigger than 10,000
- 0 values that are bigger than 100,000
Code: Expression_barcode_stats.R
Code: Expression_target_stats.R
Code: gRNA_barcode_stats.R
Code: gRNA_target_stats.R
Code: Hashtag_barcode_stats.R
Code: Hashtag_target_stats.R
Code: Expression_barcode_dist_plot.R
Comment: The cell with highest overall detected gene expression
Comment: The cell with lowest overall detected gene expression
Comment: As Xuanyao said, this kind bar plot is too dense and can’t really see the overall distribution, the CDF plot below is more clear
Comment: From this CDF figure I kind of know why there were only ~9000 cells used after Qc’ing with UMI>=850 filter. Less than 10% cells have UMI>=850. But still, why exactly 850 is still a question for me to explore
Comment: Many zeros (consistent with the observation that the matrix was very sparse); UMI>850 is invisible in this plot. As Xuanyao said, I should exclude the outliers or add y-axis break
Code: Expression_target_dist_plot.R
Comment: The highest (mean) expressed gene is WDR45-like (WDR45L) pseudogene (high UMI counts in all cells)
Comment: The lowest (mean) expressed gene is RP4-669L17.1 pseudogene (zero UMI counts in all cells)
Comment: Non-zero UMI counts for all genes (~35k, including mito genes; 686,612 cells intotal)
Comment: CDF plot: ~80% genes have < ~5000 UMI counts in all cells (not all genes captured in each cell, but I guess still a lot)
Comment: PDF plot: same conclusion as above
Code: gRNA_barcode_dist_plot.R
Comment: The cell with highest overall (mean) gRNAs, and it has 15 highly expressed gRNAs
Comment: The cell with lowest overall (mean) gRNAs (transfection/transduction failed in this cell)
Comment: Non-zero UMI counts in all cells (I’d say the transfection/transduction relatively even across all cells)
Comment: CDF plot: ~80% cells have < ~40 UMI counts for each gRNA (note: the authors mentioned MOI ~ 10)
Comment: PDF plot: same conclusion as above
Code: gRNA_target_dist_plot.R
Comment: The highest (mean) gRNA in all cells (gRNA targeting PPIA-2, which is a control)
Comment: The lowest (mean) gRNA in all cells (likely it’s a low score gRNA site but the authors didn’t have better choices)
Comment: Non-zero UMI counst for all gRNAs (137,347 cells in total; I’d say the transfection/transduction efficiency varies among gRNAs. The authors designed all the gRNAs within 200bp of the targeted variants,there must be limitations in terms of gRNA options)
Comment: CDF plot: ~80% gRNAs have < ~20,000 UMI counts in all cells (137,347 cells in total, ~15% transfection/transduction success rate, acceptable)
Comment: PDF plot: same conclusion as above
Code: Hashtag_barcode_dist_plot.R
Comment: The cell with highest (mean) Hashtags (note: the authors used only 4 Hashtags, I might check which antibodies they are when performing association)
Comment: The cell with lowest (mean) Hashtags (not tagged by any of the antibodies)
Comment: This figure is not an error. All cells have 1/2/3/4 UMI counts, and because many of them have 4, it looks like a block when it’s such dense
Comment: CDF plot: ~80% cells have < ~2 UMI counts for each Hashtag (It make sense to me because the authors are likely trying to label different cell types)
Comment: PDF plot: same conclusion as above
Code: Hashtag_target_dist_plot.R
Comment: The highest (mean) Hashtag (HTO23) in all cells (I would guess this is the relatively more common cell type, also, there were some non-specific antibody binding)
Comment: The lowest (mean) Hashtag (HTO25) in all cells (I would guess this is the relatively less common cell type, also, it dosen’t seem to overlap with HTO25, which is a good thing)
Comment: Non-zero UMI counts for the 4 Hashtags (I’d say the 4 cell types are relatively even)
Comment: CDF plot: ~80% Hashtags have < ~200,000 UMI counts in all cells (410,228 cells in total, I thinking the antibody binding efficiency is pretty good)
Comment: PDF plot: same conclusion as above
14,775 cells
with
3,875 median genes per cell
.Previous question:
percent-mito < 20%
?UMI > 850
?no UMI upper limit
?My understanding:
Notes:
14,813 cells
retained).MT
” rather than “MT-
”, so I
wrote a script to convert all these genes.14,675 cells
with 3,917 median genes per cell
.9,391 cells
retained
(9,343 cells
by the authors in comparison,508 cells
from
authors’ list not in my list.Code: QC_filter.R
Code: UMI_plot.R
Before UMI count filtering:
After UMI count filtering:
Before percent-mito filtering (generated by Seurat):
After percent-mito filtering (generated by Seurat):
Barcodes comparison:
Code: QC_compare.R
QC_by_author.txt
QC_by_hang.txt
Comparison result:
[1] "There are 508 cells filtered out in comparison to authors' list."
Previous question:
My understanding: probably NOT wrong.
Plotted with base R:
hist(barcode_dist, freq=F, breaks=150, main="PDF: UMI counts in each barcode (cell)", xlab="UMI counts in each barcode (cell)", ylab="PDF")
Plotted with EnvStats
package:
EnvStats::epdfPlot(barcode_dist, epdf.col = "red")
Didn’t bother to do calculus, just very roughly calculated
1.5e-04 x 7000 = 1.05
Ref: Kim et al. 2020
Code: zero-flated.R
summary(glm(zero_prop ~ target_mean, family = poisson, data = whichmodel_10)) # poisson
Call:
glm(formula = zero_prop ~ target_mean, family = poisson, data = whichmodel_10)
Deviance Residuals:
Min 1Q Median 3Q Max
-0.13432 -0.00250 0.01255 0.01294 1.08289
Coefficients:
Estimate Std. Error z value Pr(>|z|)
(Intercept) -0.012969 0.005915 -2.193 0.0283 *
target_mean -0.672805 0.019706 -34.141 <2e-16 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
(Dispersion parameter for poisson family taken to be 1)
Null deviance: 2256.629 on 35374 degrees of freedom
Residual deviance: 88.113 on 35373 degrees of freedom
AIC: Inf
Number of Fisher Scoring iterations: 5
summary(glm.nb(zero_prop ~ target_mean, data = whichmodel_10)) # negative binomial
Call:
glm.nb(formula = zero_prop ~ target_mean, data = whichmodel_10,
init.theta = 18539.38634, link = log)
Deviance Residuals:
Min 1Q Median 3Q Max
-0.86791 -0.31620 0.01294 0.06140 1.32706
Coefficients:
Estimate Std. Error z value Pr(>|z|)
(Intercept) -0.012969 0.005915 -2.193 0.0283 *
target_mean -0.672803 0.019707 -34.141 <2e-16 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
(Dispersion parameter for Negative Binomial(18539.39) family taken to be 1)
Null deviance: 6991.6 on 35374 degrees of freedom
Residual deviance: 4823.2 on 35373 degrees of freedom
AIC: 66516
Number of Fisher Scoring iterations: 1
Theta: 18539
Std. Err.: 7723
Warning while fitting theta: iteration limit reached
2 x log-likelihood: -66509.53
Note: this is to remove the dead cells using a more stringent UMI cutoff (850 originally, 1400 here)
Code: QC_filter_2.R
Code: UMI_plot_2.R
Before UMI count filtering:
After UMI count filtering:
Before percent-mito filtering (generated by Seurat):
After percent-mito filtering (generated by Seurat):
Barcodes comparison:
Code: QC_compare_2.R
QC_by_author.txt
QC_by_hang_2.txt
Comparison result:
[1] "There are 755 cells filtered out in comparison to authors' list."
sessionInfo()
R version 4.2.1 (2022-06-23)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: Ubuntu 22.04.1 LTS
Matrix products: default
BLAS: /usr/lib/x86_64-linux-gnu/blas/libblas.so.3.10.0
LAPACK: /usr/lib/x86_64-linux-gnu/lapack/liblapack.so.3.10.0
locale:
[1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C
[3] LC_TIME=en_US.UTF-8 LC_COLLATE=en_US.UTF-8
[5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8
[7] LC_PAPER=en_US.UTF-8 LC_NAME=C
[9] LC_ADDRESS=C LC_TELEPHONE=C
[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C
attached base packages:
[1] stats graphics grDevices utils datasets methods base
other attached packages:
[1] workflowr_1.7.0
loaded via a namespace (and not attached):
[1] Rcpp_1.0.9 compiler_4.2.1 pillar_1.8.0 bslib_0.3.1
[5] later_1.3.0 git2r_0.30.1 jquerylib_0.1.4 tools_4.2.1
[9] getPass_0.2-2 digest_0.6.29 jsonlite_1.8.0 evaluate_0.15
[13] tibble_3.1.7 lifecycle_1.0.1 pkgconfig_2.0.3 rlang_1.0.2
[17] cli_3.3.0 rstudioapi_0.13 yaml_2.3.5 xfun_0.31
[21] fastmap_1.1.0 httr_1.4.3 stringr_1.4.0 knitr_1.39
[25] sass_0.4.1 fs_1.5.2 vctrs_0.4.1 rprojroot_2.0.3
[29] glue_1.6.2 R6_2.5.1 processx_3.6.1 fansi_1.0.3
[33] rmarkdown_2.14 callr_3.7.0 magrittr_2.0.3 whisker_0.4
[37] ps_1.7.1 promises_1.2.0.1 htmltools_0.5.2 ellipsis_0.3.2
[41] httpuv_1.6.5 utf8_1.2.2 stringi_1.7.6