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Abstract

Many existing pipelines for scRNA-seq data apply pre-processing steps such as
normalization or imputation to account for excessive zeros or “drop-outs." Here, we
extensively analyze diverse UMI data sets to show that clustering should be the
foremost step of the workflow. We observe that most drop-outs disappear once
cell-type heterogeneity is resolved, while imputing or normalizing heterogeneous data
can introduce unwanted noise. We propose a novel framework HIPPO
(Heterogeneity-Inspired Pre-Processing tOol) that leverages zero proportions to explain
cellular heterogeneity and integrates feature selection with iterative clustering. HIPPO
leads to downstream analysis with greater flexibility and interpretability compared to
alternatives.

Introduction

Droplet-based single cell RNA-sequencing (scRNA-seq) methods have changed the land-
scape of genomics research in complex biological systems [1-4] by producing single-cell
resolution data at affordable costs. In the state-of-the-arts protocols, a step called bar-
coding unique molecular identifiers (UMI) has been introduced to remove amplification
bias and further improve data quality [5]. Some literature [6—8] suggests that barcoding
leads to a different data structure from read count data structure but many tools remain
to not acknowledge the difference between the count data produced with and without
barcoding.

Many pipelines have been built for scRNA-seq UMI data analysis. Despite subtle
differences in these pipelines, the general order of a scRNA-seq analysis is as follows: qual-
ity control (filtering), cleaning (normalization, imputation, de-noising, batch-correction,
etc.), feature selection which often involves dimension reduction, and downstream anal-
ysis such as clustering and lineage analysis [9]. In this paper, we do not discuss filtering
and focus on the later three steps. First, the challenge of scRNA-seq data cleaning has
led to the development of a wide array of tools. Some methods adjust for sequencing
depths using size factors [10, 11]. Some impute the reads directly using a zero inflated
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model, to reduce the noise from drop-outs [12]. Some try to de-noise the entire data set
by fitting parametric models, where one example is sctransform that uses the residuals
from negative binomial regression [13] and another example is SAVER that uses Poisson
LASSO regression [14]. Despite the diversity of proposed methods, the general consensus
has been reached to use one of the following distributions to model the counts: Poisson,
negative binomial, or zero-inflated negative binomial distribution. Second, methods for
feature selection have been less controversial. Most tools use some form of gene vari-
ance to mean ratio to identify genes that are highly dispersed, where the dispersion level
is interpreted as a signal of biological heterogeneity [6, 10, 13]. Another less recognized
approach is to use the zeros in the read or UMI counts; genes with inflated zeros are
interpreted as biologically important signals [15]. Lastly, after data cleaning and feature
selection, the pre-processed data will then be piped into downstream analysis tools for
clustering analysis [16—18], trajectory inference [19, 20], or differential expression analysis
[21, 22]. Currently, pre-processing and downstream analysis have been mostly considered
as separate and consecutive steps [10, 14, 16, 23].

Here, we present extensive analyses of publicly available UMI data sets that challenge
most existing pre-processing tools’ assumption, mainly that pre-processing is a necessary
step before feature selection and downstream analysis. Our results suggest that clustering,
or resolving the cell heterogeneity, should be the foremost step of the scRNA-seq anal-
ysis pipeline, not as part of the downstream analysis. Normalizing or imputing the data
set before resolving the heterogeneity can lead to adverse consequences in downstream
analysis. Adding to the arguments that the UMI data is much cleaner than the read count
data [6, 8], our analyses demonstrate that the simple Poisson distribution is sufficient to
fully leverage the biological information contained in the UMI data if the cell-type hetero-
geneity has been appropriately accounted for. As a result, we provide a new perspective
on scRNA-seq data analysis by integrating the pre-processing step and clustering, which
was classified as part of the down-stream analysis. The proposed procedures have been
implemented in software HIPPO (https://github.com/tk382/HIPPO). HIPPO leverages
zero proportions to detect different levels of cell-type heterogeneity in each gene and can
be particularly useful for low UMI data sets with excessive zeros, such as typical datasets
generated from 10X protocols.

Results

Demystifying drop-outs

We started by exploring zero detection rates in three UMI datasets generated by 10X
protocols for both homogeneous and heterogeneous cell populations. Taking a subset of
data in Zheng [3] as created in Freytag [17] as an example, we computed zero propor-
tions, defined as the proportion of cells with zero counts per gene, across 15,568 genes,
in CD19+ B cells, CD4+/CD25 regulatory T cells, and combined. The obtained statis-
tics were plotted against gene-level average count and were compared with expected zero
proportions under the Poisson, negative binomial, and zero-inflated negative binomial
distribution, respectively (Fig. 1a). For a homogeneous cell population, we observe most
genes align well with the expected curve under the Poisson assumption. Few genes can
benefit from using the negative binomial model to account for extra dispersion from
the Poisson, but our results strongly suggest that to model the drop-outs by introducing
an extra zero-inflation component by the zero-inflated negative binomial distribution is
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Fig. 1 a Comparisons of zero proportion, gene variance, and CV as indicators for cellular heterogeneity in
different UMI data sets. b Distributions of p values from likelihood ratio test for over-dispersion and
zero-inflation. € Comparisons feature selection using likelihood ratio test and zero proportions. LR test tends
to select the genes that have mean UMI count close to 0. d t-SNE plots of CD34+ cells in Zheng data, and
relationship between zero proportions and gene means before (black) and after (colors) clustering of CD34+
cells. e Distributions of zero inflation in different PBMC data sets. The x-axis labels represent gene types from
GENCODE annotations and the number of genes within each type

unnecessary. For example, in Zheng dataset, 257 genes out of 5,568 genes would ben-
efit from negative binomial modeling (p values pass Bonferroni criterion in likelihood
ratio test at 0.05 type I error level), but no gene would benefit from extra zero inflation
parameter. The p values are not calibrated to the uniform distribution because there are
many genes that have UMI count of 1 in one cell and 0 in everywhere else, in which case
p value is close to 1 (Fig. 1b). This result shows that drop-outs are within the range of
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natural Poisson sampling noise in UMI data for a homogeneous cell population, and they
do not introduce excessive zero inflation, which is contradictory to prevalent opinions
[11, 16, 24, 25]. Extra zero inflation can be measured by comparing observed zero to
expected zero counts under Poisson distribution within a homogeneous cell population
(Methods). Through the following analysis, we show zero proportions are as effective
measures for cell-type heterogeneity as other widely used alternatives, gene variance,
coefficient of variation (CV), or dispersion parameter in negative binomial distribution
[15]. It provides simplicity and interpretability in particular for data sets with low UMI
counts and reasonable number of zeros, as zero-inflation is meaningless when no zero is
observed.

Analysis in multiple UMI data sets shows that zero proportions in most genes can be
effectively modeled by the Poisson distribution, as more than 95% of absolute z values
(Methods) are below 2. For mixed cell types, zero proportions considerably deviate from
expected values under the Poisson model, as only less than 30% of the genes have z val-
ues below 2. This shows that the zero inflation test is an effective way to find genes that
contribute to cellular heterogeneity. On the contrary, gene variance of mixed cell types
does not always surpass those of a single cell type. In Zheng data, 62% of the genes had
higher variance in pure naive cytotoxic cells than in mixed PBMC cells. On average, gene
variance is similarly distributed for homogeneous and heterogeneous cell populations
(Additional file 1: Table S2 and Figure S8). Therefore, the gene variance is rather more of
a gene-specific characteristic while being less informative about the characteristics of the
entire cell population. CV, on the other hand, suffers from an inherent numerical instabil-
ity issue when gene mean is close to 0, because when mean is close to 0, CV estimates have
high variability. Another popular option is to conduct model selection to assign genes
to one of three candidate distributions of Poisson, NB, and ZINB, but measuring over-
dispersion also suffers from a similar problem in selecting biologically meaningful genes
[6, 26]. When we used statistics from likelihood ratio test and select top genes from the
resulting statistics, the selected genes were different from those selected when we used
zero proportion (Fig. 1c). For three data sets of [3, 17, 27] (median sequencing depth of
4371, 1298, and 2393.5 respectively), the likelihood ratio test selects genes that are overly
focused on those with mean close to 0. Intuitively, the dispersion parameter scales with
the square of the ratio of gene mean to the gene variance and in nature very similar to
CV. These genes with very low mean are likely to have little information about the cells.
Still, dispersion parameter can be more useful than zero-inflation statistic when the data
set has high UMI counts, so deviance has been implemented in HIPPO as an alternative
feature selection method (Additional file 1: Figure S9, S10).

We expand the data to study all 68,579 cells from Zheng dataset [3]. When we aligned
the zero proportions with the expected Poisson curve according to the provided cell
type labels: CD14+ monocyte, CD19+ B, CD34+, CD4+ T helper2, CD4+/CD25 T
Reg, CD45RA+/CD25- naive T, CD4+/CD45RO+ memory, CD56+ NK, CD8+ cyto-
toxic T, CD8+/CD45RA+ naive cytotoxic, and dendritic cells. Most of these cell types
look relatively homogeneous. However, one cell type, CD34+, was particularly noisy
with very high zero proportions, indicating cellular heterogeneity (Fig. 1d). Based
on the diagnosis from t-SNE plots, we identified three subtypes within the CD34+
cells. The alignment of zero proportions against the Poisson curve was immediately
improved according to the inferred subtype labels. This indicates the effectiveness of zero
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proportions as metrics to evaluate cellular heterogeneity and their potentials to discern
cell types.

We further checked how zero proportions could be dispersed from the Poisson
distribution for genes with various functional annotations across all PBMC datasets
(Fig. 1e). Specifically, we calculated the difference between observed zero proportions
and expected proportions (under Poisson) for each functional group using reference data
from GENCODE of GRCh38 [28]. The vast majority of genes are categorized as “protein-
coding genes." Their zero proportions cover a wide range from 0 to 0.7, but centered at 0,
indicating variability in zero proportions but no systematic inflation of zero proportions.
In contrast, immune-related genes are consistently zero-inflated, with the interquartile
range as high as 10 to 20%. The enrichment analysis (Additional file 1: Table S4) shows
that immune-related genes have significantly higher proportion of zero-inflated genes
compared to genes that are not related to immune function. The top-ranked annota-
tions for zero inflation include IG C genes, TR C genes, and HLA genes. IG C genes are
immunoglobulin genes of the constant (C) region, while TR C genes are T cell receptor
genes of the constant region, and hence, both gene types are deeply connected to immune
system. HLA genes are genes in human leukocyte antigen system that is responsible for
the regulation of the immune system. Genes involved in immune functions are expected
to be inherently heterogeneous [29]. For example, HLA genes are highly polymorphic
than others, and TR-C genes go through VD] recombinations that lead to more diverse
sequences across cells. This result corroborates with the notion that cellular heterogeneity
is the main driver of zero inflation. Higher level of heterogeneity in immune genes explain
the past studies’ results that even within one cell type, there are zero-inflated genes [30].
The high heterogeneity of cells in certain genes suggests that it is difficult, to say the least,
to fully account for the cell type for every gene; as the cells are finely clustered, a point will
be reached where the number of cells left in each cluster is not enough to do statistically
meaningful analysis. Therefore, we use the following stopping criteria for iterative clus-
tering where the procedure stops when the number of genes with zero-inflated is less than
a certain threshold. This criterion is designed to take into account the remaining granular
biological heterogeneity in certain genes that cannot be fully resolved through cell-type.

Zero inflation test for cellular heterogeneity

Based on the above observations, we propose a new feature selection strategy that uses
detected zero proportion of a given gene as the statistic to test for cellular heterogeneity.
Under the null hypothesis, where complete cellular homogeneity is assumed, the propor-
tion of zeros is equal to the expected zero proportion under Poisson distribution. Under
the alternative hypothesis, zero proportion is inflated, as if the count data follows mixture
of Poisson (Methods). Formally, our framework can be presented as follows:

Hy: pg=es, (1)
Hy: pg> e e 2)
where g is gene index and A, is the mean UMI count for gene g. The above testing frame-
work is based on an assumption that whether UMI count being 0 follows the Bernoulli
distribution. Test statistic z; follows a standard normal under the null hypothesis (Meth-

ods). Genes with rejected null hypotheses will be selected for downstream analysis. For
example, the CD34+ cell population within Zheng2017 dataset [3] has 2.7% of the genes
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Table 1 Zero inflation test statistics of PPBP gene in CD34+ cells in Zheng data before and after
clustering into subtypes

Cell population Gene mean Expected p Observed p z score
CD34+ 25.89 5.69e—12 0.26 1838203
Subtype 1 0.5625 0.57 091 6.19
Subtype 2 2236 1.93e—10 0 0
Subtype 3 38.96 1.25e—17 0 0

with significant zero inflation at 5% type I error level after Bonferroni correction. But
after clustering into subtypes, each subtype had 1.3%, 0.3%, and 1.2% of genes with zero
inflation respectively. We demonstrate the intuition of this test procedure in Table 1 using
gene PPBP as an example. PPBP was identified with a high zero proportion of 26% and an
average mean UMI count of 25.89 within CD34+ cells, indicating very high zero inflation
with z-score greater than 10° when the proposed test is applied. After we separate CD34-+
cells into three subtypes, the test within each subtype is no longer statistically significant.
We observe PPBP is highly expressed in subtypes 2 and 3 and is almost unexpressed in
subtype 1. This shows how cellular heterogeneity can drive excessive zeros and how zero
proportions can be used to discern cell types.

The proposed framework significantly differs from existing ones in several ways. First of
all, only the proportion of zeros (pg), but not that of other non-zero count values, is used
in the test. We empirically show that this statistic is sufficient for cellular heterogeneity
analysis in many data sets with low UMI counts. This allows us not to search for a partic-
ular parametric distribution to fit all non-zero values, which can be computationally more
burdensome. In terms of clustering, analysis shows that deviance and zero-inflation both
lead to feature selection with similar performance (Additional file 1: Figure S11, S12); our
software can use deviance test for feature selection when a data set has high UMI counts
and zeros alone do not hold enough information. Secondly, this framework allows each
gene to have different grouping structure across cells. Most existing methods select one
set of genes to cluster all the cells [10, 18, 31, 32], which implicitly assume cell types can
be well-defined biologically by a common set of genes. This is not realistic given the fact
that each gene’s heterogeneity level varies with its function. For example, housekeeping
genes are expected to behave similarly in all cells but immune-related genes, known to
have more diverse genetic profiles with highly polymorphic nucleotides [33, 34], might be
more finely differentiated among the sampled cells. Our approach acknowledges this type
of variability. Finally, our approach provides a much more optimistic view of the UMI data
analysis. No complicated modeling is needed for resolving the cellular heterogeneity.

We observe that the droplet-based data-generating process in the 10X protocols
affect UMI counts in different cell types and even across datasets in a similar fashion
(Additional file 1: Figure S1, S2). Regardless of samples or cell types, all cells show the
same distribution of zero proportions with respect to mean UMI count. This means
the technical noise affects each and every cell fairly, and hence, biological heterogene-
ity alone can largely explain the zero inflation phenomenon. Once the heterogeneity is
accounted for, without any other pre-processing steps, zero proportions of UMI data
closely follow the expected curve under a Poisson distribution. These observations urge
us to re-evaluate some widely used pre-processing methods under this scope.
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Inappropriate pre-processing introduces unwanted noise in the downstream analysis

One of the most popular method for normalization is to divide UMI counts by a cell-
specific scaling factor so that total UMI counts are equal across cells [11]. This strategy
implicitly assumes sequencing depth effects are purely technical. Total UMI count needs
to be carefully corrected in case of data integration. Data sets collected from different
protocols and batches have different distribution of UMI counts. However, when there is
no batch effect, the total UMI count has valuable biological information. Here, we show
sequencing depths are confounded with cell types and size factor-based adjustment can
obscure biological information. For a given gene, dividing UMI counts by cell-specific
factors does not change its zero proportion across cells but changes its mean. As a con-
sequence, zero proportions across genes no longer follow the expected curve under a
Poisson distribution (Fig 2a), and the two curves from each cell type are separated from
one another. For example, in 6 PBMC data sets (Azizi and Zheng) [3, 27], monocytes
have lower UMI counts than B cells. The median UMI counts for monocytes and B cells,
respectively, are 787 and 1180 for Zheng data for 68,000 PBMC cells, 4831 and 5575 for
Azizi 2018 data for breast cancer tumor patient 9 (replication 1), 4891 and 5372 for patient
10, and 5093 and 5722 for patient 11 (replication 1). When they are forced to match the
median UMI count of all cells, the counts for the monocytes are inflated while those for
the B cells deflated. In addition, cell types are stratified on the zero proportion plot after
adjustment, indicating that total UMI counts of each cell contain valuable information
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Fig. 2 a Scatterplots between gene means and zero proportions across genes calculated from raw UMI data,
clustered data, and data after sequencing-depth normalization, respectively. Fitted line is negative binomial
curve. b, ¢ Evaluations of pre-processing in Sctransform. b Distributions of sequencing depths across cells in
raw UMI data vs. data cleaned by SCtransform. ¢ Comparisons of three monocyte markers in raw UMI data vs.
data cleaned by SCtransform. d, e Evaluations of pre-processing in DCA. d Log fold changes and log p values
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strategies show the general deflation of biological signals of DCA when applied to heterogeneous cells
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about its cell type (Fig. 2a, Additional file 1: Figure S14). The UMI counts for different cell
types do not need to be consistent across different tissues or organisms. For example, in
Zhang2019 data, B cells and monocytes have similar total UMI counts (Additional file 1:
Figure S14), but fibroblast has more UMI counts than all other types. Forcing fibroblasts
to have the same UMI counts as other types would reduce the signal strengths of the
markers for fibroblasts.

Sctransform is one recent influential UMI analysis method [13]. The key idea of
sctransform pre-processing is to remove sequencing depth effects by introducing log-
scale sequencing depth as a covariate and regressing it out from each cell under a
negative binomial model. Similarly, this approach destroys the natural Poisson struc-
ture for zero proportions. We show in Fig. 2b, ¢ an example of how normalization
can further interfere with detection of biological signals. Across all 6 PBMC datasets
mentioned above, we observe B cells always have more UMI counts than monocytes
before pre-processing. Applying sctransform barely modifies the sequencing depths
of monocytes but shrinks the UMI counts of B cells to match those of mono-
cytes. Due to the artificial shrinkage, biological markers for B cells, such as MS4A1l,
CD79A, and CD79B, lose their power to discern B cells and monocytes [35]. This sug-
gests cell type differences could be potentially compromised due to excessive cleaning
from sctransform.

Another popular pre-processing step is to apply deep learning based de-noising
tools such as Deep Count Autoencoder (DCA) and SAVER, which de-convolute
the technical effects from biological effects and impute zero accounts due to drop-
outs at the same time. DCA implements deep neural network with flexible para-
metric options for noise distributions. Similarly, we observe DCA blurs the distinc-
tion among cell types, because denoising methods essentially regularize each cell
to resemble one another. We illustrate its negative impacts on downstream analysis
by comparing differential expression analysis results using two imputation strategies.
We selected naive T cells and regulatory T cells from Zhengmix8eq for the exper-
iments, which clustering algorithms often struggle to differentiate because of their
similarity. In the first experiment, we imputed naive T cells and regulatory T cells
together. In the second, we imputed naive T cells and regulatory T cells separately.
Then, we performed DE analysis on imputed data sets using edgeR’s likelihood ratio
test [22]. We observe much greater log fold change values between naive T and reg-
ulatory T cells from data imputed separately than data imputed together. Overall, the
signal strength of DE analysis is greatly compromised across all the genes if imput-
ing two cell types together (Fig. 2d—e). Using type I error level of 0.05, 320 genes
pass the Bonferroni criterion if clustering is performed first, while only 156 does if
imputation is performed first. Known markers including CD4, CTLA4, FOXP3, and
IL2RA [35] lost significant amount of biological signals by showing weaker log-fold
change (Fig. 2d, Additional file 1: Figure S15). When the cells were first clustered
and then imputed, the p values were 1le—04, 8e—04, 2e—07, and 4e—11 respectively
for those genes. When the cells were imputed first through DCA, the p values were
3e—01, 4e—02, 4e—02, and 6e—07. Hence, three of the 4 genes lost statistical signifi-
cance at a very liberal p value threshold of 0.05. This analysis suggests imputing the
UMI data without resolving cell heterogeneity can lead to loss of important biological

information.
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HIPPO: Heterogeneity-Inspired Pre-Processing tOol
The above analyses suggest the first and foremost step in pre-processing is to account
for the cellular heterogeneity. Imputation or normalization before resolving the cellular
heterogeneity may lead to inevitable loss of biological signals. We implement this new
perspective into a computational tool called HIPPO, where we integrate the proposed
zero inflation test into a hierarchical clustering framework. Specifically, we first selected
genes with strong indication for cellular heterogeneity. We use a cutoff of 2 on z score for
selection of genes. The selected features were then used to cluster the cells into 2 groups
using PCA + K-means. Then, each cluster was evaluated with their intra-variability using
the mean Euclidean distance from the centers of K-mean algorithm. The group with the
highest intra-variability was selected and assigned for next round of clustering. The fea-
ture selection and clustering steps are iteratively repeated until one of the two ending
criteria are met: K round of clustering for pre-determined number of clusters K, or the
number of zero-inflated genes is less than a certain percentage of the genes. The former
one can be difficult to set in real practice without any prior knowledge and the later one
offers a more natural stopping criterion. HIPPO is computationally cheap because fewer
and fewer features will be left for the next round of clustering, and the Poisson-based
test statistic has closed-form expression (Fig. 3a, b). In Fig. 3c, we show the results from
each iteration of HIPPO on Zhengmix8eq data. HIPPO successfully identifies monocytes,
natural killer cells, B cells, and T cells in the respective order. Then, it further separates
naive cytotoxic cells, memory T cells, and naive T cells from a group of regulatory T cells
and helper T cells. However, when forced to separate into one more group, instead of
clustering the remaining T cells, it created another subgroup of natural killer cells. Mean-
while, Seurat and Sctransform fails to separate the memory T cells, regulatory T cells,
and helper T cells, grouping them as one cluster. (Fig. 3d). The adjusted rand index for
the three methods show that HIPPO performs the best throughout the different K spec-
ification (Fig. 3e). When the selected features’ characteristics were studied through CV,
gene variance, and zero proportion, Seurat and Sctransform selected more features (2000
and 3000 respectively while HIPPO selected 950), but they are highly concentrated where
gene means are near 0. This is because their feature selection focuses on coefficient of
variation which becomes numerically unstable as gene mean becomes near zero. HIPPO
selects fewer but more relevant genes by using the zero proportion as the selection met-
ric (Fig. 3f). This result is repeated in a different data set from muscular heart tissue in
Fig. 4a. Genes selected by both methods are those with non-zero mean UMI counts, but
Seurat selects extra number of genes that have mean count very close to 0. These genes
are likely to add noise instead of contributing to real biological signals detection.
HIPPO's iterative procedures naturally offer strong interpretability through sequential
visualization of the analysis at each round of clustering. We use HIPPO results on an
unlabeled 10X UMI data set of 10K E18 mouse heart cells for illustration. Sequential
feature selection can be monitored through the visualization of the changing relation-
ships between zero proportions and gene means. As cells are clustered into finer distinct
groups, or as more cellular heterogeneity is resolved, regression lines between zero pro-
portions and gene means get more closely aligned with the expected Poisson curve
(Fig. 4b). Simultaneously, we can use a heatmap to visualize top features that con-
tribute most at each round of clustering (Fig. 4c). In addition to biomarkers identified
based on zero inflation, HIPPO also implements a differential expression test based
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QUAD workstation with Intel Xeon W-2175 processor sequentially (non-parallel). b Computing time for
HIPPO using different k. € HIPPO's sequential clustering results for K = 3, - - - ,8.d t-SNE plots for clustering
results from three methods: HIPPO, Seurat, and SCTransform, compared to true labels. Seurat and
SCTransform cannot differentiate helper T/regulatory T and memory T cells. e Clustering results comparisons
using Adjusted Rand Index. f Comparisons of features selected by different methods for their gene mean, CV,
and variance. Seurat and SCTransform use CV as the selection criteria, and hence, their features weigh heavily
on genes with small mean expression and variance

on all count values to extract more features (Methods, Fig. 4d). The differential anal-
ysis can be viewed together with a t-SNE plot constructed with the same color code
(Fig. 4e).

Discussion

We have provided a new perspective on the analysis of single-cell UMI data sets of multi-
ple tissues and protocols (Additional file 1: Figures S1, S2, S3, S4, S7). Extensive analyses
confirm the claims of recent literature [6] that different tool must be applied to the UMI
data set from the tools for read count data set; UMI data set is free from amplification
bias, so the level of technical noise is much lower. The results also show that cell-type
heterogeneity must be tackled as the first step of analysis for more reliable downstream
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Fig. 4 HIPPO framework applied to 10K E18 mouse heart cells. a Distributions of means across gene features
selected by Seurat, Hippo, both, or none. b Sequential feature selection visualizes how genes gradually align
closer to the expected Poisson line as more heterogeneity accounted for. € Heatmaps of top features
selected at the first 5 rounds of clustering. d Top differential expression genes obtained at each round of
clustering. e Visualization of sequential clustering using t-SNE plots

analyses. Moreover, through a streamlined feature selection method that reflects the
dynamic nature of cellular process, the proposed method provides a computationally and
mathematically simple analysis tool with great interpretability.

There are remaining challenges that are important in the future development of sin-
gle cell UMI data analysis. First, lack of labeled data restricts the analyses in certain
protocols such as Drop-seq. There is strong evidence for our method in 10X data sets.
Supplementary Figures also show that the claims hold in all 10X data, Tung2018 data
that uses Hi-Seq 2500 [25] and Baron2016 data that uses in-Drop [36]. In Drop-seq, the
noise level was too high to assume the zero proportions follow the exponential curve
relative to the gene mean (Additional file 1: Figure S7). It is either that Drop-seq data
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sets have different noise structure from the 10X data sets, or in particular Macosko data
[2] of muscular retina cells have excessively high cellular heterogeneity [1]. Future new
Drop-seq data could help resolve the discrepancy between 10X and Drop-seq. Second,
although HIPPO is computationally simple compared to existing tools, the current com-
putational bottleneck is the principal component analysis, which could be slow for large
cell numbers. In that case, advanced computing techniques such as sub-sampling or more
rigorous filtering should be applied. In addition, HIPPO is implemented as evolving mod-
ular software. In the current release, we include two different feature selection methods,
deviance test and zero-inflation test, and two differential expression detection methods.
Alternative dimension reduction or clustering methods can be easily incorporated into
the framework.

We focus on the pre-processing with resolving cellular heterogeneity in our analysis
tool, but this novel perspective on the noise structure of UMI data can be extended to
other steps of analysis pipeline. Batch correction, lineage analysis, or trajectory inference
can all benefit from the simpler noise structure not only computationally but also by
avoiding unnecessary normalizing steps that can introduce unwanted bias and noise.

Methods and materials

Datasets

Throughout the analysis, we used publicly available single cell UMI sequencing data from
various protocols. Most analysis in the main text is focused on SRP073767 which is also
available in 10x Genomics, and it sequences 68,000 PBMC cells using Cell Ranger 1.1.0
[3]. We use different subsets of this data sets, namely Zhengmix4eq, Zhengmix4uneq,
and Zhengmix8e(q as defined in Duo (2018)[31]. Other data sets used in the main text are
GSE111108 [37] and GSE115189 [17], and GSE114724 [27]. Supplementary data includes
more data sets from 10X including 5k Cells from a combined cortex, hippocampus and
subventricular zone of an E18 mouse (v3 chemistry), 1k Brain Cells from an E18 Mouse
(v2 chemistry), and 10k Heart Cells from an E18 mouse (v3 chemistry). We also use Tabula
Muris data from various mouse tissues [38]. We also use GSE84133 [36] as an example of
in-Drop, GSE63473 [2] as an example of Drop-seq, SDY998 [39] as an example of CEL-
seq2, and GSE77288 [25] as an example of Hi-Seq. All the data sets were analyzed after
their own filtering process (Table 2).

Benchmarked methods
In Fig. 3, we benchmark Seurat 3.0.0 [40] and SCTransform version 0.2.0 that is
integrated with Seurat platform. Seurat was implemented following its guided tuto-
rial https://satijalab.org/seurat/v3.1/pbmc3k_tutorial.html, and SCTransform through
a vignette https://rawgit.com/ChristophH/sctransform/master/inst/doc/seurat.html. All
parameters were selected through software’s default except resolution parameter for clus-
tering to generate results for various number of clusters. Seurat used in Fig. 4 A was also
the same version with the default parameters for feature selection. In Fig. 3a, the t-SNE
plots were created using the features selected by the first round of HIPPO because they
reflected the division of true cell labels the most accurately.

DCA was installed through Conda and imputation was performed following the tuto-
rial on https://github.com/theislab/dca. In one experiment, we first divide the data set
into correct labels, and then impute them separately using DCA (imputing homogeneous


https://satijalab.org/seurat/v3.1/pbmc3k_tutorial.html
https://rawgit.com/ChristophH/sctransform/master/inst/doc/seurat.html
https://github.com/theislab/dca
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Table 2 List of data sets used in the main text and supplementary materials

D Data set Species Protocol

10x 5KNeuron Mouse neuron 10x (v3.1) CR*3.0.2
10x 10KHeart Mouse heart 10x (v3) CR 3.0.0
GSE111108 [37] Tian2018 Human cell lines 10x Chromium
GSE115189[17] Freytag2018 Human PBMC 10x (v2)

10x 1KNeuron Mouse neuron 10x (v2) CR2.1.0
SRP073767(3] Zhengmix4eq Human PBMC 10x (v1) CR1.1.0
SRP073767 Zhengmix4uneq Human PBMC 10x (v1) CR 1.1.0
SRP073767 Zhengmix8eq Human PBMC 10x (v1) CR1.1.0
SRP073767 PBMC3k Human PBMC 10x (v1) GemCode
SRP073767 PBMC4k Human PBMC 10x (v1) Chromium
SRP073767 PBMC68k Human PBMC 10x (v1) CR 1.1.0
GSE84133[36] Baron2016 Human pancreas inDrop
GSE114724[27] AziziPatientO9Rep1 Human breast tumor 10x CR 2.1.1
GSE114724 AziziPatient09Rep2 Human breast tumor 10x CR2.1.1
GSE114724 AziziPatient10Rep1 Human breast tumor 10x CR 2.1.1
GSE114724 AziziPatient11Rep1 Human breast tumor 10x CR 2.1.1
GSE114724 AziziPatient11Rep2 Human breast tumor 10x CR 2.1.1
SDY998([39] Zhang2019 Human joint synovial CEL-seg2
GSE63473[2] Macosko2015 Mouse Drop-seq
GSE77288 [25] Tung2017 Human iPSC HiSeq 2500
Tabula Muris [38] Tabula Muris Mouse 10x (v2)

CR cell ranger

cell population). In the other experiment, we impute both cell types together (imputing
heterogeneous cell population). One property of DCA is that it automatically removes
genes that are 0 in all the cells. Naturally, there are more such genes in homogeneous cell
populations. Especially, some of the biomarkers are not expressed at all when cell popula-
tion is divided into subtype. In that case, we imputed zero to those genes, assuming DCA
did not perform any imputation (Fig. 2d, e). SAVER was downloaded from CRAN with
version 1.1.1. In Additional file 1: Figure S16 transcriptome-level statistics were compared
only using genes that had at least one positive count in each cell type. In both DCA and
SAVER, all the parameters the default values as suggested by the software.

Likelihood ratio test in Figs. 1b and 2f was conducted by fitting the distributions
using the fitdistr function from MASS package [41], and zero-inflated negative binomial
distribution was fitted using pscl package [42].

Poisson mixture model

Consider a gene by cell matrix if UMI counts X for gene g = 1,---,G and cell ¢ =
1,---,C. To understand the behavior of the zeros for each gene, the first step is to reduce
the information from each gene to the proportion of zeros across the cells

€. Ix,—o
Pe=) —o— 3)
C
c=1
which is an estimator for the true zero proportion of gene g: p,. We study its relationship
against the mean expression for the set of cells, because p, would decrease as the expres-
sion level increases. With the test statistic above, we test a one-sided hypothesis for each
gene g, whether the zero proportion is higher than the expected rate under the Poisson
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model. For the alternative hypothesis, we believe that UMI counts follow finite Poisson
mixture. The hypotheses for each gene g are formally specified below.

Kg
Ho:p=ee, Hy:p= ane_xkg
k=1

In practice, we re-frame the hypotheses as Hy : K; = 1,Ha : K, > 1 when
p = Zfi 1 mre ¢, In other words, zero inflation indicates there is cell heterogeneity
across the samples. If the cell population is truly homogeneous, the count data follows

Poisson data with expected zero proportion ez,

Chen (2018) and Sarkar (2020) demonstrates that most genes in UMI data follow Pois-
son distribution [6, 7] while other noisy genes follow negative binomial or zero-inflated
binomial distribution. Such model, although fundamentally different, is closely tied to
the Poisson mixture model because negative binomial is the limiting distribution of
Gamma-Poisson. If A, for each cell is drawn independently from the gamma distribu-
tion T'(rg, %), then ZCC:I Xeg ~ %Pois(kcg) & X ~ NB (r, %) . While negative
binomial assumes a continuous mixture of Poisson, the proposed model assumes a finite
mixture of Poisson, which is simpler and more directly addresses the source of zero

inflation.

In practice, we do not explicitly estimate g, but instead simply test if observed py is
larger than expected p with estimated gene mean A. (Hy : pg > e7¢). It might seem
counterintuitive that this test statistic does not fully leverage the specification of the alter-
native hypothesis; mixture parameters ; are not estimated. Alternatively, for example,
one might suggest that we can conduct a likelihood ratio test of Poisson versus Poisson
mixture. The main strength of the proposed reduced test statistic is its robustness to the
modeling assumptions. Table 3 shows that the proportion of zeros are always larger than
expected under different alternative hypotheses. Under the proposed alternative, mix-
ture of Poisson, the proportion of zeros under the null hypothesis would be e=* where A
is the weighted mean of the gene mean for each cell-type. Due to Jensen’s inequality, p
under alternative hypothesis is always greater than that under the Hy (Additional file 1:
Figure S13) (Table 4).

Table 3 The alternative hypothesis Ha : pg > e~ is robust to different model hypotheses

Underlying distribution p under Hy punder Hy
Mixture of Poisson e = o LTk 3o, e

.
Negative binomial e (,ﬁ)

,
Zero-inflated negative binomial e (ﬁ) + 7

In the first row, the right column is larger than the left column due to Jensen'’s inequality. For negative binomial, the dispersion
parameter r is constructed so that the variance is ’7 + A, so that Poisson is a special case of negative binomial with r = co. The
zero-inflated negative binomial distribution is parameterized as w80 + (1 — 7o) NB(A, 1)
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Table 4 High gene variance is not a good indicator of cell type heterogeneity under the alternative
hypothesis of zero-inflated negative binomial, because the variance can be lower under the
alternative hypothesis

Alternative hypothesis Variance under Hyp Variance under Ha

Mixture of Poisson A=Y mihk sz 7O + 20 = oy miehi)?
Negative Binomial A AT + A

Zero-inflated negative binomial A (1 = mp)? (¥ + A)

Feature selection and Inference
We provide two ways to select features: zero-inflation test and deviance test. The
clustering performance is similar using both methods.

For zero-inflation test, HIPPO defines the observed zero proportion p, and expected
zero proportion e=X. For gene g with count data X for cells ¢ = 1, - -, C, consider an
estimate for the proportion of zeros pg as

C
ZCZ] ]]‘ch=0
()

The gene mean is estimated as the average UMI counts X, = & > Xgc and is treated

i’g:

as a fixed number. Then,
- 1— 2

The test statistic z-score for gene g is as below.

- -X
Zy = pig —¢
E T pe(1—py)

C

To note, the gene mean e X

is also a random variable that follows a log-normal distribu-
tion, whose inference is not trivial (further discussion can be found in Supplementary
Text 1). However, this feature selection method works well in practice and intuitively

interpretable.

Users can also use deviance measure to select the top features [8].

dg=2- XC: <Xcglog (%) - (Xc _)_(Cg))

c=1

The deviance threshold is required from the users to select cutoffs to select the features.

Hierarchical clustering
Algorithm 1 outlines the iterative procedure of HIPPO’s hierarchical clustering. Several
stopping criteria can be determined by the user: the maximum number of clusters K, the
feature selection statistic threshold z, and outlier gene proportion o. The algorithm first
computes the number of outlier genes to allow, G x o. For example, if there are 30,000
genes in total and o is specified as 1% = 0.01, then the algorithm allows 300 features to
have zero inflation. During the clustering procedure, HIPPO terminates in either scenar-
ios: there are K identified clusters or if there are less than G x o genes that exceed the
specified z value threshold.

HIPPO takes all the cells and select the features whose zero inflation statistic z exceeds
the threshold. Only zero-inflated features are then log-transformed (log(X)+1) and sent
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Algorithm 1 Cell-Type Hierarchical Clustering

K: upper limit of cluster number
z-threshold: threshold for feature selection
t=1
fork=2,---,Kdo
if Less than the designated number of genes exceed z threshold then
stopping criterion; terminate algorithm
else
update the matrix by selecting new features
log transformation + centered/scaled PCA + Kmeans
divide cells into two groups, one with label £ and another with label k
log transformation + un-centered/un-scaled PCA
update intra-cluster variation by taking sample variance of un-scaled PCs
update £ = cluster with the highest intra-cluster distance
end if
end for
return cluster labels for each k

into principal component decomposition with scaling and centering. HIPPO then clusters
the cells into two groups using the dimension-reduced cell embeddings through K-means,
which is performed multiple times (user-defined, default 10) for stability.

Meanwhile, during the hierarchical clustering, HIPPO keeps track of intra-cluster vari-
ation by performing unscaled, uncentered PCA. HIPPO computes the first 10 dimensions
(user-defined) of cell embeddings and sum up the sample variance of each component.
The PCA for recording the intra-cluster variability is not scaled to avoid potential bias
due to the cell population size. Since a subset of cells are considered for clustering at
each round, fewer and fewer cells are used for the dimension reduction. If scaled, their
dimension-reduced cell embeddings would be artificially more far apart compared to
when more cells were considered for clustering. The intra-cluster variance is the criterion
for selecting the cell group to be further clustered in the next round.

Differential expression testing
HIPPO provides two methods to identify differentially expressed genes, one by perform-
ing a t-test on means, and the other by performing a Poisson likelihood test.

For both methods, the cells are separated into two groups as follows.

Xglc € C1 ~ Poisson(Ay), Xglc € Cy ~ Poisson(A2)

Ho:A1=Ay,  Ha:l # X

The first method conducts the 2-sample ¢-test by measuring the significance in the mean
difference of two groups.

XC1g - Xng
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which asymptotically follows standard normal distribution.

The second method conducts the likelihood ratio test by measuring the deviance in
null and alternative models. The MLEs under both null model and alternative model are
estimated as below.

N 1 ~ 1 ~ 1
A= ——— E Xeo, M =— Xeo» Agz—EX
IC1] + Cal ¢ IC1l « Ca «
ceCrUCy ceCy ceCy

Then, the deviance for testing these nested models is, £ denoting Poisson log-likelihood,

2| Y ) + Y K ha) = Y X h)

ceCy ceCy ceC1UCy

that asymptotically follows x? distribution.
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