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Abstract 
 

The majority of variants associated with complex traits and common diseases identified by 

genome-wide association studies (GWAS) map to noncoding regions of the genome with unknown 

regulatory effects in cis and trans. By leveraging biobank-scale GWAS data, massively parallel 

CRISPR screens and single cell transcriptome sequencing, we discovered target genes of 

noncoding variants for blood trait loci. The closest gene was often the target gene, but this was not 

always the case. We also identified trans-effects networks of noncoding variants when cis target 

genes encoded transcription factors, such as GFI1B and NFE2. We observed that GFI1B trans-

target genes were enriched for GFI1B binding sites and fine-mapped GWAS variants, and 

expressed in human bone marrow progenitor cells, suggesting that GFI1B acts as a master 

regulator of blood traits. This platform will enable massively parallel assays to catalog the target 

genes of human noncoding variants in both cis and trans. 

 
*  *  * 
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Introduction 

A major goal for the study of common diseases is to identify causal genes, which can inform 

biological mechanisms and drug targets for these diseases. To this end, genome-wide association 

studies (GWAS) have identified thousands of single nucleotide polymorphisms (SNPs) or small 

nucleotide insertions or deletions associated with disease outcomes or disease-relevant 

phenotypes. However, since these associations are nearly always found in noncoding regions, 

identifying their target genes remains elusive. Many recent studies have used statistical fine-

mapping to first identify plausibly causal GWAS variants and then combined fine-mapped variants 

with functional genomics data to identify candidate cis-regulatory elements (cCREs) and their 

putative target genes (1–6).  

However, a key missing element is the ability to move beyond association and test the impact of 

perturbations at cCREs on putative target gene expression at scale. Recent studies have performed 

CRISPR-based mutagenesis, silencing or activation screens of noncoding regulatory elements to 

identify target genes (7–12), but no study to date has harnessed high-throughput genome 

engineering to study multiple GWAS variants in single cells. Here, we present Systematic 

Targeting and Inhibition of Noncoding GWAS loci with single-cell sequencing (STING-seq), an 

approach to identify GWAS target genes. STING-seq first prioritizes cCREs by functional 

annotation and overlap with fine-mapped GWAS variants and then tests for gene regulatory 

function using pooled CRISPR inhibition (CRISPRi) and single-cell RNA-sequencing (Fig. 1A). 

We demonstrate the utility and high yield of this approach by identifying target genes in cis and/or 

trans for 37 fine-mapped noncoding variants for 27 loci, out of 88 tested variants for 56 loci, 

associated across 29 blood trait GWASs from UK Biobank. 

 

Results 

STING-seq library design using fine-mapped GWAS 

We elected to study blood cell traits due to their high polygenicity and links to multiple common 

diseases (13–15), and the large number of genotyped individuals available in biobank-scale data 

repositories with measured blood traits. For our study, we examined 29 blood trait GWASs in the 

UK Biobank, including traits from platelets, red blood cells, white blood cells and reticulocytes 

(Table S1A). For statistical fine-mapping, we first processed summary statistics from the 29 blood 
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trait GWASs with GCTA-COJO (16, 17) to define 1 megabase (Mb) regions surrounding 

conditionally independent lead variants at Pj < 6.6x10-9, a suitable significance threshold for 

biobank-scale GWAS data (18) (Table S1B). For each 1 Mb region, we identified plausibly causal 

variants using FINEMAP, a shotgun stochastic search algorithm (19). We identified a median of 

469 conditionally independent lead variants and 3,335 fine-mapped variants (93.2% non-coding) 

per GWAS (Table S1A). For our STING-seq study, we selected a group of 88 target variants in 

56 loci (1 Mb each) from different GWASs by intersecting fine-mapped noncoding variants with 

biochemical hallmarks of enhancer activity, such as chromatin accessibility (ATAC-seq and 

DNAse hypersensitivity) and canonical histone modifications (H3K27ac ChIP-seq) from human 

erythroid progenitor cells (K562 cells). Additionally, we required each selected variant to be distal 

(over 1 kb) from the transcription start site of any gene expressed in K562 cells (Table S1C). The 

variants covered a broad range of minor-allele frequencies and effect sizes and were often the 

highest probability variant in a fine-mapped GWAS locus (32 variants) or among the 10 most 

probable variants (52 variants) (Fig. 1B). 

Before designing the CRISPR library, we sought to optimize the CRISPRi platform for our study. 

To date, all pooled CRISPRi screens have used a nuclease-null Cas9 (dCas9) fused to a single 

transcriptional repressor (KRAB) to silence specific genome elements. Recently, a dual-repressor 

MeCP2-dCas9-KRAB system was shown to increase repression using a transient transfection 

approach (20). We cloned both CRISPRi repressors into a uniform lentiviral vector (Fig. 1C), 

transduced K562 cells and selected for transduced cells with blasticidin. We then transduced each 

CRISPRi cell line with guide RNAs (gRNAs) targeting the transcription start sites (TSS) of three 

genes (MRPS23, CTSB and FSCN1) and selected for transduced cells via puromycin selection. 

Using digital PCR, we found that MeCP2-dCas9-KRAB resulted in 57% greater repression of gene 

expression than dCas9-KRAB (Fig. 1D, Fig. S1A-C, Table S2). We also targeted previously 

described CREs for each of the 3 genes and found consistently greater repression with MeCP2-

dCas9-KRAB (49% greater repression) (7). Based on the increased activity at both proximal and 

distal regulatory elements, we proceeded with the dual-effector CRISPRi platform (“CRISPRi 

v2”). 

To study the 88 selected variants and their cCREs, we designed a library with 176 gRNAs designed 

to target each variant with 2 gRNAs. We computationally optimized the 176 gRNAs to minimize 

off-target activity using established gRNA design tools (21) (Table S3A). We also included three 
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sets of controls: 12 non-targeting (negative) control gRNAs from the GeCKO v2 library (22), 12 

positive control gRNAs to target the TSS of six genes that are highly-expressed in K562 cells, 

CD46, CD52, HSPA8, NMU, PPIA and RPL22 (23), and 10 gRNAs to target the TSS of CD55 

that were used as an in-line control to estimate the average number of gRNAs per cell (multiplicity 

of infection, MOI) (Table S3A). 

 

STING-seq identifies cis-effects upon cCRE perturbation 

We transduced K562 cells with the pooled library virus at a high MOI (multiple CRISPRi 

perturbations per cell) and verified the high MOI transduction via flow cytometry for CD55  after 

10 days (Fig. S2A-C). We then performed Expanded CRISPR-compatible Cellular Indexing of 

Transcriptomes and Epitopes with sequencing (ECCITE-seq) to simultaneously capture CRISPRi 

gRNAs, transcriptomes and antibody-derived tags from single cells (24, 25). The antibody-derived 

tags enabled us to recover greater numbers of single cells through droplet superloading and doublet 

detection. 

After sequencing the ECCITE-seq library, we isolated cells with high-quality transcriptomes by 

eliminating cells with low total transcriptome reads and those with excessive mitochondrial read 

contamination. We also defined a minimum threshold of unique molecular identifiers (UMIs) for 

gRNA assignment (5 UMIs) beyond which there was minimal change in the number of gRNAs or 

cells detected (Fig. S3A, B). After these filters, we recovered 9,343 single cells with a median of 

9 gRNAs per cell (Fig. 2A, Table S3B). Each gRNA was found in a median of 342 cells (Fig. 

2B). To perform gRNA-to-gene-expression pairwise testing, we recently developed a conditional 

resampling approach (SCEPTRE) that yields state-of-the-art calibration on CRISPR single-cell 

datasets (26). We applied SCEPTRE to all targeting gRNAs, performing 1,261 pairwise tests with 

a median of 7 genes per variant-targeting gRNA located within 500 kb of each tested SNP.  

We observed good calibration for our results when compared to testing for differential expression 

between non-targeting gRNAs and the same 586 genes tested for cis-regulatory effects (Fig. 2C, 

Table S3C). None of the non-targeting gRNA-gene pairs were significant (5% false discovery 

rate, FDR). In contrast, at the same 5% FDR threshold, positive control gRNAs targeting the TSSs 

of six genes were all associated with significant decreases in expression (Fig. S3C, Table S3D). 
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We used the same threshold to identify STING-seq CREs with significant cis-regulatory effects 

and found that 37 of the variants met this criteria. 

Since we designed our STING-seq library with two independent CRISPRi gRNAs targeting each 

variant, we also quantified the concordance between genetic perturbations by assigning variants to 

one of three Tiers (Fig. 2D, Table S3E). In all Tiers, we required that at least one gRNA targeting 

the CRE to have a significant change in gene expression in cis (5% FDR). The majority of CREs 

with significant cis-regulatory effects (21 variants) had their second gRNA reach nominal 

significance with a concordant change in gene expression (SCEPTRE p < 0.05) (Tier 1). For Tier 

2, we had 12 variants where the second gRNA had a concordant change in gene expression with 

the first gRNA but was not nominally significant. And, in Tier 3, we identified four variants where 

the second gRNA was captured in fewer than 30 cells and hence not tested. In total, we identified 

33 target genes for 37 variants from blood trait GWASs. This includes loci where multiple CREs 

modulate the same gene or where a single CRE modulates more than one gene in cis.  

Targeted variants that overlapped with H3K27ac ChIP, ATAC and DHS from K562 were enriched 

for significant cis-genes, compared to variants outside these annotations (odds ratio = 3.36, 

Fisher’s exact test p = 0.03) (Fig. 2E). For the majority of significant cis-genes, they were also the 

closest gene (distance to the TSS); however, there were four significant cis-genes that were the 

second closest, and five that were further away (Fig. 2F). For 33 variants, we identified a single 

significant gene in cis and, for four variants, we found two significant genes in cis (Fig. 2G). Of 

the 33 variants with eQTL data (eQTL Catalogue), we found that six variants had the same cis-

eQTL target genes as their STING-seq target genes. This shows that STING-seq uncovers cis-

target genes not captured by eQTL mapping (27) (Table S3F).  

Among the loci with significant target genes in cis, rs4526602 was the top ranked and most 

significantly associated SNP to the monocyte percentage blood trait at its locus (Fig. 3A). The 

SNP is in an intergenic region, between the gene bodies of AIM1L and CD52, and the gene with 

the closest TSS to the SNP is UBXN11. Given this position, it is unclear which of these genes (if 

any) might be the target gene of the SNP locus. When testing for changes in gene-expression in 

cis using the most abundant gRNA (1,278 cells), we found that CD52 was the only significantly 

decreased gene (Fig. 3B, log2 fold-change = -1.92, SCEPTRE p-value = 4.5x10-12).  

Among fine-mapped variants with two cis-genes detected via STING-seq, rs1065853 was the top 

ranked and most significantly associated SNP to an immature red blood cell percentage trait (high 
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light scatter reticulocyte percentage) at its locus (Fig. 3C). This SNP maps to an intergenic region, 

between the gene bodies of APOE and APOC1, with APOE being the closest gene and also has 

significant associations with high and low density lipoprotein levels (28). Upon testing against 

genes in cis with the top gRNA (captured in 405 cells), both APOE (log2 fold-change = -0.63, 

SCEPTRE p-value = 2.8x10-6) and APOC1 (log2 fold-change = -0.27, SCEPTRE p-value = 3.5x10-

6) had significantly decreased expression (Fig. 3D). Previous studies have shown that APOE and 

APOC1, which encode apolipoproteins E and C1, influence blood lipids and diverse ailments 

including cardiovascular disease and Alzheimer’s disease (29, 30). Since these genes work in a 

coordinated fashion to regulate lipid metabolism (31), the co-regulation of these genes by the 

rs1065853 locus is an especially interesting observation of regulatory pleiotropy that may 

contribute to trait associations. 

We also examined loci with several fine-mapped variants near a single gene of interest. At the 

PTPRC locus, we targeted nine variants that were significant across 10 GWASs (Fig. S4A, Table 

S1D) and mostly not in strong LD as quantified by pairwise R2 from 1000 Genomes (32) (Fig. 

S4B). The nine variants mapped to distinct cCREs, one was upstream of the PTPRC TSS and the 

remaining eight were in the first intron (Fig. S4C). We observed the strongest repression of PTPRC 

when targeting the two SNP-identified CREs closest to the TSS (Fig. S4D), and significant effects 

for four other SNP-CREs. Of the three nonsignificant targeted SNPs, two are in high LD (R2 ≥ 

0.95) for significant targeted SNPs, suggesting that these may be nonfunctional LD proxies. For 

all of these variants, PTPRC was the only significant target gene and thus very likely the causal 

GWAS gene (Table S3E). These results suggest high allelic heterogeneity driven by multiple 

independent regulatory variants in distinct CREs affecting PTPRC expression. Interestingly, these 

variants have highly distinct blood trait associations (Fig. S4A), indicating that while regulatory 

effects from distinct CREs can converge at the level of the expression of a single gene, their 

downstream phenotype effects can vary. 

 

Inhibition of a CRE that modulates GFI1B expression leads to widespread trans-effects  

To understand the impact of GWAS CREs on global gene expression, we tested all gRNAs for 

trans-effects by performing transcriptome-wide differential gene expression tests against all 

10,324 genes expressed in at least 5% of cells. We applied a strict 1% false discovery rate to 

identify significant genes in trans (Fig. 4A) and again saw good calibration with non-targeting 
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gRNAs (Table S3C). We observed a striking number of significant trans-effects for gRNAs 

targeting three different SNPs: rs524137, rs73660574 and rs79755767 (Fig. 4A, Fig. S5, Table 

S3G-I). We found that rs524137 and rs73660574 were in significant CREs for GFI1B (Fig. 4B) 

and that rs79755767 was in a significant CRE for NFE2 (Fig. S6A). GFI1B and NFE2 are both 

transcription factors that play a key role in the differentiation of hematopoietic stem cells (33). 

For rs524137, an intergenic enhancer of GFI1B that is located 11.5 kb 3’ of the gene, we observed 

569 differentially expressed genes (Fig. 4C). By analyzing data from a prior CRISPRi-based study 

that also targeted this genomic locus and reported the cis effect on GFI1B (7), we found that 321 

of these differentially-expressed genes replicated independently (Fig. 4C). For the rs73660574-

identified CRE, a weaker, intronic enhancer for GFI1B, we observed 28 differentially expressed 

genes; 24 of these 28 differentially expressed genes (including GFI1B) were also found when 

perturbing the rs524137 locus (Fig. S6B). Thus, perturbing either rs73660574- or rs524137-

identified CREs led to changes in the expression of target genes of GFI1B. 

To better understand the trans-effects of these two GFI1B enhancers, we examined gene-

expression changes in all 569 differentially-expressed genes identified for rs524137 — and did so 

for both SNPs (Fig. 4D). For these genes, we observed a high correlation between perturbations 

targeting each SNP (r = 0.85). Even though many of the gene expression changes were more 

modest when perturbing rs73660574, we found a linear dosage relationship between the cis and 

trans regulatory effects for these two SNP loci: the dosage effect across the 569 genes (log2-slope 

= 0.45) was in agreement with the difference in rs524137 and rs79755767 effects on GFI1B 

expression (Δlog2 fold-change = 0.44) (Fig. 4B).  

 

Trans-regulated genes are enriched for transcription factor binding sites and GWAS loci 

GFI1B encodes a transcription factor central to hematopoiesis (33–36), therefore we examined 

GFI1B ChIP-seq data in K562 cells (35) near the transcription start sites of rs524137-GFI1B trans-

regulated genes and observed GFI1B binding (Fig. 4E, Table S4A), with a significant enrichment 

across all rs524137-GFI1B trans-regulated genes (Fig. 4F, Table S4B). As expected given 

GFI1B’s known role as a transcriptional repressor (36), genes with increased expression were more 

strongly enriched [odds ratio (OR) = 2.96, Fisher’s exact test p-value (p) = 5.5x10-20] than genes 

with decreased expression (OR = 1.79, p = 9.3x10-6). Among significant rs73660574 trans-
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regulated genes for GFI1B binding sites only the genes with increased expression were 

significantly enriched (OR = 5.22, p = 5.6x10-3, Fig. S6C, Table S4B).  

The NFE2 CRE has significant trans-effects (rs79755767) for 134 genes (Fig. S6D), supported by 

a previous study that reported its trans-effects (8) that are potentially explained by NFE2’s role as 

a hematopoietic transcription factor important for platelet and megakaryocyte development (33, 

37). Using NFE2 ChIP-seq data from K562 cells (38), we observed an enrichment for rs79755767-

trans regulated genes (OR = 6.12, p = 4.6x10-8), including both genes with increased (OR = 5.94, 

p = 1.3x10-4) and decreased expression (OR = 6.25, p = 9.5x10-5) (Fig. S6E, Table S4A-B). This 

was not surprising, as NFE2 is a member of a complex of transcription factors and can act as either 

a gene activator or repressor (39). These findings suggest that perturbing CREs for TFs that are 

putatively affected by fine-mapped noncoding GWAS variants can reveal genes that are the 

primary targets for TF binding and secondary targets in a regulatory network. 

Next, we hypothesized that GFI1B and NFE2 trans-regulatory networks discovered by STING-

seq may have an overall role in blood trait GWASs, beyond the variants affecting these TFs in cis. 

We constructed a set of putatively causal genes for each of the 29 GWASs by selecting the closest 

genes to fine-mapped variants of GWAS loci, and then grouped them by their blood cell trait, 

generating gene sets for platelets, red blood cells (RBCs) and white blood cells (WBCs) (Table 

S4A). Analyzing genes that overlap rs524137-GFI1B trans-regulated genes, we discovered that 

the gene sets of these three GWAS cell-types were mostly distinct (Fig. 4G). The rs524137-GFI1B 

trans-regulatory genes were broadly enriched for blood cell GWAS traits, including platelet genes 

(OR = 1.68, p = 8.5x10-6), RBC genes (OR = 1.66, p = 6.0x10-7) and WBC genes (OR = 1.32, p = 

1.3x10-2) (Fig. 4H, Table S4B). We also observed an enrichment of rs79755767-NFE2 trans-

regulatory networks for red blood cell genes (OR = 1.76, p = 6.2x10-3) (Fig. S6F-G, Table S4B), 

indicating that the known role of GFI1B and NFE2 in hematopoiesis and cell differentiation is 

mediated by their effects on regulatory networks. Enrichment of independent blood cell trait 

GWAS loci among GFI1B and NFE2 trans-regulated genes provides strong support for this.  

 

Trans-regulated genes cluster by biological role and cell type 

Given the breadth of rs524137-GFI1B trans-regulated genes and their enrichment for GWAS loci, 

we next analyzed the structure of this regulatory network and its contribution to blood trait GWAS 
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and underlying biology. Using gene co-expression and clustering analyses with our K562 single-

cell data on the 569 identified rs524137-GFI1B trans-regulated genes, we identified three major 

gene clusters (A, B and C) (Fig. 5A). Cluster A, which represents approximately half of the genes 

with increased expression upon repression of the GFI1B CRE with STING-seq (Fig. 5A, Table 

S4A), was the most strongly enriched for GFI1B binding sites (OR = 4.02, p = 7.4x10-8) (Fig. 5B, 

Table S4B). Cluster B, which includes the other half of genes with increased expression, and 

Cluster C, which consists almost entirely genes with decreased expression, were also enriched for 

GFI1B binding sites, although less so (OR = 2.00, p = 6.2x10-5 and OR = 1.82, p = 7.0x10-6, 

respectively) (Fig. S7A, Fig. 5C, Table S4B). Cluster C was strongly enriched for putative GWAS 

genes for platelet and RBC traits (OR = 1.76, p = 7.1x10-4 and OR = 2.02, p = 1.3x10-6, 

respectively) (Fig. 5C, Table S4B), which was consistent with Gene Ontology enrichments in this 

cluster for heme biosynthesis (Table S4C). Given that Cluster A was the most strongly enriched 

for GFI1B binding, but Cluster C was the most strongly enriched for GWAS loci and contained 

known genes for blood biochemistry, we inspected these two clusters further in primary cells to 

inform what the separate or shared functions of these clusters may be. 

We integrated the GFI1B co-expression network with Human Cell Atlas single-cell RNA-

sequencing from 35 bone marrow donors (40, 41), as bone marrow includes a rich sample of 

multipotent progenitor cells crucial for hematopoiesis (Fig. 5D). First, we confirmed the 

expression of GFI1B was limited to progenitor cells for RBCs and megakaryocytes, which produce 

platelets (33) (Fig. 5D). Genes from Cluster A were expressed in virtually all bone marrow 

progenitor cells, but not in differentiated cells (Fig. 5E-F, Table S4D). Together with Cluster A’s 

high enrichment of GFI1B binding sites and increased expression upon inhibiting GFI1B (a 

repressor), this suggests that these genes are the primary targets of GFI1B to suppress 

differentiation in non-erythrocytic and non-megakaryocytic pathways (36). Cluster B genes were 

highly expressed in granulocyte-monocyte progenitors (GMP) and their differentiated cell types, 

including monocytes and dendritic cells (Fig. S7B-C, Table S4D). For Cluster C, we saw 

expression in RBC progenitors and megakaryocyte progenitors (Fig. 5G-H). We summarized the 

findings for the three clusters (Table S4E) and computed their mean expression per cell across all 

bone marrow cell types (Fig. S7D). These results suggest that Cluster C genes, which had 

decreased expression upon inhibiting GFI1B via STING-seq and are enriched for genes in RBC 

and platelet GWAS loci as well as in the heme biosynthesis pathway, are secondary targets of 

GFI1B to differentiate progenitor cells down the RBC and megakaryocytic lineages. That we 
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identified these trans-regulatory networks in a homogenous blood progenitor-like cell type (K562) 

demonstrates the utility of STING-seq in studying diverse effects of CREs on target genes. GWAS-

identified CREs can impact entire regulatory networks in trans, providing insight into molecular 

mechanisms of genetic effects on complex traits.  

 

Estimation of single cells needed to apply STING-seq to other diseases and traits 

Given the large number of GWASs performed over the past 15 years, with numbers of trait-

associated loci per GWAS ranging from tens to thousands (28), we wanted to understand the scale 

of cells needed to perform STING-seq under various settings. By performing statistical down-

sampling experiments on the trans-regulatory effects identified with STING-seq, we computed the 

number of cells required for 80% power with high, medium and low target gene expression, and 

strong, medium and weak CRISPRi effects (i.e. observable log2 fold-change) (Fig. S8A). For 

example, for genes in the middle tertile of expression with strong CRISPRi effects, 80% power 

was retained with as few as 350 cells per gRNA. To extrapolate the number of single cells required 

for other GWASs, we took the number of independent loci for recent studies on BMI-adjusted 

waist-hip ratio (1077 loci) (42), type 2 diabetes (568 loci) (43), schizophrenia (222 loci) (44), 

rheumatoid arthritis (101 loci) (45) and stroke (32 loci) (46). If SNP prioritization allowed 

targeting of a single SNP per locus, the same design as in this study would allow search for trans-

effects at 80% power across several hundreds of GWAS loci with approximately 50,000 single 

cells – which is a feasible experimental scale (Fig. S8B). If this analysis was performed under 

typical pooled CRISPR screen parameters with MOI ~ 1, at least 500,000 cells would be necessary, 

highlighting the utility of multiple CRISPRi perturbations per cell in STING-seq. 

 

Discussion 

In summary, we have developed an approach to understand noncoding human genetic variants that 

integrates fine-mapped GWAS data, pooled CRISPR screens and single-cell RNA-sequencing and 

can identify target genes for variants in both cis and trans. We demonstrated the utility of STING-

seq in identifying cis-target genes of CREs with likely causal GWAS variants, and also describe 

more complex regulatory architectures with CREs regulating more than one gene in cis and 

multiple CREs targeting the same gene. Additionally, we identified variants mapping to CREs for 
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the transcription factors GFI1B and NFE2 and, through their perturbation, identify trans-

regulatory networks and their subnetworks with distinct biological functions. The enrichment of 

genes in independent blood cell trait GWAS loci in these networks implies a polygenic 

contribution in these cellular functions that underlie diverse blood cell traits.  

The first step of STING-seq — the selection of putatively causal variants GWAS variants to target  

— relies on prioritization approaches (2, 6, 47–52). We used a straightforward annotation strategy 

that looked for fine-mapped variants in cCREs, and identified significant target genes for 42% of 

them. We considered this a high yield over previous studies that studied regulatory effects of 

noncoding genomic loci (7–9, 53–60). The loci without detected effects can be due to the variant 

being a non-functional LD proxy of the real causal variant, lack of effect on the studied cell type, 

or simple lack of detection power. Improved fine-mapping and variant prioritization methods have 

the potential to improve target gene identification with STING-seq further especially in loci with 

high LD.  

STING-seq uses a powerful and scalable CRISPRi-based approach to suppress GWAS-implicated 

CREs. However, functional effects of a variant cannot be directly inferred from silencing of a 

regulatory element, but fine-mapping of GWAS-associated variants overlapping experimentally 

validated CRE provide strong joint evidence of these variants being functional. Going forward, 

STING-seq can be combined with catalytically active Cas9, CRISPR-activation or scalable base-

editing approaches (61). A key feature of recent CRISPRi screens of CREs (7, 8), including 

STING-seq, is introduction of multiple perturbations per cell. This substantially increases the 

number of loci that can be feasibly analyzed. While this is feasible for immortalized cell lines like 

K562, expanding multiple perturbations (via either high MOI transduction or innovative vector 

designs) to other cell lines and primary cells will be instrumental for the next stage of target gene 

identification and characterization for diverse GWAS traits.  

Finally, our results demonstrate the power of single-cell sequencing for sensitive and scalable 

readout of regulatory effects of GWAS loci in cis and trans. While we have a high yield in cis 

target gene discovery, we note that identification of a cis gene alone with STING-seq does not 

prove its mechanistic causal role driving the GWAS association, nor exclude other potential causal 

variants, CREs and genes, including in other cell types. In loci where cis-effects are coupled with 
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trans-network effects, STING-seq can be highly informative of potential cellular mechanisms, 

which also provides strong support for the causal role of the cis-target gene.  

Altogether, the workflow we have outlined with STING-seq demonstrates a clear roadmap to 

identify target genes for GWAS loci in a high-throughput fashion, enabling future studies of human 

noncoding genome function.  

 

 

 
*  *  * 
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Materials and methods  
 
Genome-wide association studies of blood cell traits 

We used genome-wide association study (GWAS) summary statistics for 29 blood cell traits from 
361,194 white British UK Biobank participants: White blood cell (leukocyte) count, red blood cell 
(erythrocyte) count, hemoglobin concentration, hematocrit percentage, mean corpuscular volume, 
mean corpuscular hemoglobin, mean corpuscular hemoglobin concentration, red blood cell 
(erythrocyte) distribution width, platelet count, platelet crit, mean platelet (thrombocyte) volume, 
platelet distribution width, lymphocyte count, monocyte count, neutrophil count, eosinophil count, 
basophil count, lymphocyte percentage, monocyte percentage, neutrophil percentage, eosinophil 
percentage, basophil percentage, reticulocyte percentage, reticulocyte count, mean reticulocyte 
volume, mean sphered cell volume, immature reticulocyte fraction, high light scatter reticulocyte 
percentage and high light scatter reticulocyte count (Table S1A). Each GWAS was performed by 
fitting the following covariates to inverse normal transformed traits with linear regression models: 
Principal components 1 through 20, sex, age, age2, sex and age interaction and sex and age2 
interaction. The summary statistics were generated by the Neale Lab (www.nealelab.is/uk-
biobank). 
 

Statistical fine-mapping of blood cell traits 

The 29 GWASs of blood cell traits were uniformly processed with a statistical fine-mapping 
pipeline. First, each GWAS was analyzed with GCTA-COJO v.1.93.1 (16, 17) to identify 
conditionally independent lead variants (pj < 6.6x10-9) and define 1 Mb regions for statistical fine-
mapping. All variants within 500 kb of a lead variant were analyzed with FINEMAP v.1.3.1 (19), 
a Bayesian fine-mapping method that assigns each variant a Bayes factor for being plausibly 
causal. Both GCTA-COJO and FINEMAP require population-matched covariance matrices, 
therefore we generated these with PLINK v.2.0 (62), QCTOOL v.2.0.2, BGENIX v.1.1.5 (63) and 
LDstore v.1.1 (64), using a subset of 50,000 UK Biobank white British participants (UK Biobank 
accession code 47976). FINEMAP allows for a maximum number of causal configurations to test 
for each input set of variants, therefore we set the maximum to 10 causal configuration variants 
per fine-mapped region and excluded cases where FINEMAP failed to converge. We then retained 
noncoding variants with a high Bayes factor (log10 BF ≥ 2) for a set of causal variants. Fine-mapped 
variants that had more than one Bayes factor, due to being within 250 kb of multiple lead variants, 
had their highest value retained. Across all 29 GWASs, we identified 825 loci, separated by at 
least 500 kb, and 55,349 fine-mapped variants. The Variant Effect Predictor (VEP) tool (65) was 
used to identify 52,293 of which were noncoding. 
 

Functional annotation of causal noncoding SNPs 

We integrated multiple functional genomics datasets for K562 cells. Specifically, we used DNase 
I hypersensitive sites (DHS) from ENCODE (38), H3K27ac ChIP-seq peak calls from ENCODE, 
and ATAC-seq peak calls that we generated previously (66) to identify candidate cis-regulatory 
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elements (cCREs). We used bedtools v.2.25.0 (67) and bedops v.2.4.3 (68) to identify variants 
mapping directly to cCREs. We also required variants to be further than 1 kb from any gene TSS. 
This annotation strategy identified 10,789 distinct variants mapping to 627 loci. We then selected 
88 variants from 56 loci for targeting based on whether a variant was targetable and more plausibly 
causal than others for a given GWAS and locus by ranking FINEMAP log10 Bayes factors and 
manual inspection of loci. For the 88 selected variants, 32 were the most probable variant for at 
least one GWAS locus, and 52 were in the top-10 most probable variants. For the 56 loci, there 
was an average median of 10.5 (± 8.6) targetable SNPs. Elements of manual inspection included 
selecting variants that mapped to intergenic regions between gene TSSs or selecting multiple 
variants that map proximal to the same gene. 
 

Plasmid cloning for lentiviral CRISPRi and modified gRNA scaffold vectors 

To generate the KRAB-dCas9 (lentiCRISPRi(v1)-Blast) and KRAB-dCas9-MeCP2 
(lentiCRISPRi(v2)-Blast) plasmids, KRAB and dCas9 were PCR amplified from pCC_09 
(Addgene 139094) (69) and the MeCP2 effector domain was synthesized as a gBlock (IDT). 
KRAB and MeCP2 were linked to dCas9 with flexible glycine-serine linkers and cloned into 
lentiCas9-Blast (Addgene 52962) (22).  

To generate the gRNA vector (lentiGuideFE-Puro), we digested pCC_09 with NheI and KpnI to 
isolate the U6 promoter and Cas9 guide RNA scaffold with the F+E scaffold modification (70). 
After gel extraction (Qiagen 28706), we ligated this piece into NheI and KpnI-digested 
pLentiRNAGuide_001 (Addgene 138150) vector using T4 ligase (NEB M0202M) (71). 
 

Cell culture and monoclonal cell line generation 

HEK293FT cells were acquired from Thermo Fisher (R70007). HEK293FT (human) cells were 
maintained at 37°C with 5% CO2 in D10 media: DMEM with high glucose and stabilized L-
glutamine (Caisson DML23) supplemented with 10% fetal bovine serum (Thermo Fisher 
16000044). K562 cells were acquired from ATCC (CCL-243) and were maintained at 37°C with 
5% CO2 in R10 media: RPMI with stabilized L-glutamine (Thermo Fisher 11875119) 
supplemented with 10% fetal bovine serum (Thermo Fisher 16000044). Cells were regularly 
passaged and tested for presence of mycoplasma contamination with MycoAlert Plus Mycoplasma 
Detection Kit (Lonza). 

Lentivirus was produced by polyethylenimine linear MW 25000 (Polysciences 23966) transfection 
of HEK293FT cells with the transfer plasmid containing a Cas9 effector, or gRNA library, 
packaging plasmid psPAX2 (Addgene 12260) and envelope plasmid pMD2.G (Addgene 12259). 
After 72 h post-transfection, cell media containing lentiviral particles was harvested and filtered 
through 0.45 mm filter Steriflip-HV (Millipore SE1M003M00). K562 cells were transduced with 
KRAB-dCas9 or KRAB-dCas9-MeCP2 at a low multiplicity-of-infection (MOI < 1). Transduced 
K562 cells were selected with 10 ug/uL blasticidin (Thermo A1113903) for 10 days to enrich for 
expression of the dCas9 effector proteins. To isolate individual clones, K562 polyclonal lines were 
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serially diluted to 50 cells per 10mL media. We then plated 100uL of this cell-media mix in 96-
well round bottom plates (~0.5 cells/well). 
 

Digital PCR for CRISPRi gene repression 

We compared the CRISPRi v1 and v2 systems by targeting the transcription start sites and known 
enhancers of three genes (MRPS23, SLC25A37 and FSCN1) with two gRNAs per targeted region. 
We synthesized gRNAs as top and bottom strand oligos (IDT) and cloned them into BsmBI-
digested lentiGuideFE-Puro. We transduced the cells in biological triplicate with gRNA 
lentiviruses at a low MOI and after 24 hours selected for cells with gRNAs using puromycin (1 
ug/uL, Thermo Fisher A1113803). We harvested the cells 10 days after transduction and extracted 
RNA using TRIzol (ThermoFisher 15596026). We quantified RNA concentration by 
spectrophotometry (NanoDrop). To measure gene expression, we performed digital PCR 
(Formulatrix Consellation) with Cy5/Iowa Black RQ target gene probes (IDT), FAM/ZEN/Iowa 
Black FQ for the actin normalizer (IDT), and Luna Universal One-Step RT qPCR Master Mix kit 
(NEB E3005L) and Tween-20 (Sigma-Aldrich P1379). We first normalized the target gene 
expression by actin expression per sample and then normalized this ratio to the ratio from cells 
transduced with non-targeting control gRNAs.  
 

CRISPR inhibition library design and cloning 

We designed 20 nt gRNAs to target within 200 bp of the 88 selected plausibly causal noncoding 
variants. We used FlashFry v1.10.0 (21) to retain gRNAs with the lowest predicted off-target 
activity, as estimated by the Hsu-Scott score (72). Each SNP was targeted by two different gRNAs. 
In addition, we also included in our library 12 non-targeting gRNAs from the GeCKOv2 library 
(22) as negative controls and 12 gRNAs targeting the TSSs of six non-essential genes as positive 
controls. The six non-essential genes (CD46, CD52, HSPA8, NMU, PPIA and RPL22) were 
identified by a CRISPR knock-out screen in K562 cells using the PICKLES database (73). We 
additionally included 10 gRNAs targeting the CD55 TSS for our FACS-based multiplicity-of-
infection (MOI) estimator, bringing the total number of gRNAs to 210. 

To clone the gRNA library, top and bottom strand oligos (IDT) were resuspended in water at 100 
uM and then mixed at 1:1 ratio for each gRNA. Then, 1uL of the oligo mix was added to a master 
mix containing 1x T4 ligase buffer (NEB M0202M), 0.5 uL T4 PNK (NEB M0201L) and water 
to a final concentration of 10uL per reaction. For oligo annealing, we incubated the oligo mix at 
37ºC for 30 min, then 95ºC for 5 min with a temperature change of 1ºC/5s until reaching 4ºC. To 
create the oligo pool, we pooled together 3 uL of each annealed oligo. The oligo pool was diluted 
1:10 with water and then cloned in the lentiGuideFE-Puro, which was linearized with BsmBI 
(Thermo ER0451) and dephosphorylated. The ligation was performed in 11 reactions with each 
reaction consisting of 5uL Rapid Ligation Buffer (Enzymatics B101), 0.5 uL T7 ligase 
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(Enzymatics L602L), digested plasmid at 25 ng per reaction, 1 uL diluted oligo mix and ddH2O 
to final volume of 10 uL. The ligation was performed at room temperature for 15 min.  

Next, 100 uL of the combined ligation reactions were mixed with 100 uL isopropanol, 1 uL 
GlycoBlue (Thermo Fisher AM9515) and 2 uL of 5M NaCl (50 mM final concentration), 
incubated for 15 min at room temperature, and spun at 12,000 g for 15 min. The pellet was washed 
twice with prechilled 70% ethanol, air dried for 15 min or until dried completely, resuspended in 
5 uL 1x TE buffer (Sigma). Next, 2 uL of library ligation was added to 50 uL Endura cells 
(Lucigen) then electroporated, recovered and plated. The following day bacterial colonies were 
scraped, plasmids were isolated using a maxi prep (Qiagen 12965) and library representation was 
determined by MiSeq (Illumina). 

To generate and concentrate the pooled library, lentivirus was generated as described above. 
Briefly, we seeded 10 x 225 cm2 flasks with HEK293FT cells and, at 70% confluency, we co-
transfected the pooled gRNA library, psPAX2 and pMD2.G. Lentivirus was collected 72 hours 
post-transfection and filtered using a 0.45 um filter. The supernatant was then ultracentrifuged for 
2 hr at 100,000 g (Sorvall Lynx 6000), and the pellet was resuspended overnight at 4°C in 
phosphate-buffered saline with 1% bovine serum albumin. 
 

Multiplicity-of-infection estimation via flow cytometry 

When transducing cells at a high MOI, it is not possible to estimate the MOI by traditional methods 
(e.g. survival after drug selection) or without the time and cost of single-cell sequencing. By 
including multiple gRNAs that target the CD55 TSS (10 gRNAs), we were able to estimate the 
number of gRNAs per cell (MOI) using flow cytometry for CD55 cell surface protein knockdown 
over a range of viral transduction volumes. We performed two transductions with concentrated 
lentivirus (4 uL and 6 uL) and, after 48 hours, we selected with puromycin for 10 days. We 
included three positive control transductions with different CD55 TSS-targeting gRNAs and three 
negative control transductions with three different non-targeting gRNAs.  

For flow cytometry, 1x106 cells per condition were harvested and washed with PBS after selection. 
The cells were stained for 5 minutes at room temperature with LIVE/DEAD Fixable Violet Dead 
Stain Kit (ThermoFisher L34864). Subsequently, the cells were stained with antibodies for 20 
minutes on ice with 1uL CD55-FITC (clone JS11) (BioLegend 311306). Cells were washed with 
PBS to remove unbound antibodies prior to sorting. Cell acquisition and sorting was performed 
using a Sony SH800S cell sorter. Sequential gating was performed as follows: 1) exclusion of 
debris based on forward and side scatter cell parameters, 2) dead cell exclusion. The sorting gates 
were set such that 90% of live K562 cells would be considered CD55 positive. We estimated that 
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6 uL viral volume yields an MOI of ~13.5 and elected to use this condition for our STING-seq 
assay (Fig. S2). 
 

Expanded CRISPR-compatible Cellular Indexing of Transcriptomes and Epitopes (ECCITE-seq) 

For ECCITE-seq, we ran one lane of a 10x Genomics 5’ kit (Chromium Single Cell Immune 
Profiling Solution v1.0, 1000014, 1000020, 1000151) targeting recovery of 20,000 cells per lane 
(superloading). We found this required loading approximately 44,000 cells to recover 21,300 total 
cells (including multiple cells per droplet counts, or “multiplets”). Cell hashing was performed as 
described in a previously published protocol using four hashtag-derived oligonucleotides (HTOs) 
using hyperconjugation (24). Gene expression (cDNA), hashtags (HTOs) and guide RNA (Guide-
derived oligos, GDOs) libraries were constructed by following 10x Genomics and ECCITE-seq 
protocols. We sequenced the cDNA, HTO and GDO libraries with two NextSeq 500 1x75 high-
output runs (Illumina).  
 

Single cell data processing 

After demultiplexing the sequencing reads, we generated UMI count matrices for the libraries 
using the kallisto indexing and tag extraction (kite) workflow with the hg38 reference genome 
(Ensembl v96), followed by the kallisto | bustools scRNA-seq pipeline (74). We then analyzed the 
UMI count matrices in R v.4.0.2 with Seurat v.3.0.0 (41) and custom scripts for differential gene 
expression testing within the SCEPTRE framework (26). We processed the cDNA UMI count 
matrix and retained cells with less than 20% mitochondrial reads and at least 850 unique gene 
UMIs. This resulted in 14,775 cell barcodes and 3,875 median genes per cell. We identified 14,728 
cells in the HTO UMI count matrix that passed initial quality control of at least one HTO detected 
per cell and less than 2,500 total HTO UMIs per cell. We center-log-ratio (CLR) transformed the 
HTO UMI counts and demultiplexed cells by their transformed HTO counts to identify singlets. 
We used the HTODemux function and determined a threshold of 0.91 maximized the number of 
singlets detected to 9,520 while reducing the number of multiplets (multiple cells per droplet) to 
2,482 and empty cells to 2,726. We used the 9,520 singlets to then process the gRNA (GDO) UMI 
count matrix, identifying 9,507 cells after removing cells with more than 15,000 total GDO UMIs. 
We observed that a minimum of 5 UMIs per gRNA resulted in a stable threshold as the number of 
cells per gRNA does not change with higher thresholds (Fig. S3A). 
 

Pairwise gRNA-to-gene tests with SCEPTRE 

We generated raw UMI count matrices for gene expression and gRNA expression, along with 
accompanying single cell meta-data to use as covariates in model fitting (Table S3B). We defined 
for each gRNA a list of genes within 500 kb to be tested for differential expression in cis. For each 
gRNA-to-gene pair, we extracted that gene’s UMI counts and labeled the cells with a given gRNA. 
We then tested for differential expression within the SCEPTRE framework (26), adjusting for the 
following single cell covariates: total gene expression UMIs, unique genes, total gRNA expression 
UMIs, unique gRNAs and percentage of mitochondrial genes. Briefly, SCEPTRE is a statistical 
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framework to analyze high MOI CRISPR screens in single cells with state-of-the-art calibration. 
First, SCEPTRE fits a negative binomial distribution to measure the effect of a single gRNA on a 
given gene via Z-score. Then, the distribution of gRNAs to cells is randomly sampled to build a 
gRNA-specific null distribution, recomputing a negative binomial Z-score. A skew-t distribution 
is fit to compare the test Z-score and the null distribution, and a two-sided p-value is derived, 
allowing for significance tests of increased or decreased gene expression (26). To test for 
differential expression in trans, we defined for each gRNA a list of all 10,325 genes detected and 
repeated the test above. Non-targeting gRNAs were tested against all genes used in the cis and 
trans settings discussed previously and randomly sampled to match the number of cis and trans 
targeting gRNA-to-gene tests displayed on QQ-plots. 
 

Independent replication of trans-effect genes 

Genomic regions corresponding to the CREs identified by rs524137 (GFI1B) and rs79755767 
(NFE2) were targeted in two separate studies using the CRISPRi v1 system (dCas9-KRAB) in 
K562 cells, featuring different gRNAs and 10x Genomics 3’ gene expression (7, 8), as opposed to 
the 5’ gene expression workflow we implemented. We re-analyzed both studies for replication of 
our identified target genes in trans, and defined replication as a SCEPTRE p-value < 0.05 and a 
direction of effect consistent with what we observed in our study. Re-analyzing data from 
Gasperini et al. (7), we tested 569 genes identified from perturbing the rs524137-GFI1B CRE and 
replicated 321 genes (including GFI1B). Re-analyzing data from Xie et al. (8), we tested 134 genes 
identified from perturbing the rs79755767-NFE2 CRE and replicated 47 genes (including NFE2). 
 

Trans-regulated network gene set enrichments 

We used two previously published chromatin immunoprecipitation sequencing (ChIP-seq) 
datasets in K562 cells to identify GFI1B (35) and NFE2 (38) transcription factor binding sites. To 
find genes with proximal ChIP-seq peaks, we defined a 1 kb window around all protein-coding 
gene TSSs and used bedtools v2.25.0 (67). To test for enrichment of ChIP-seq peaks in GFI1B or 
NFE2 trans-regulatory gene sets, we constructed contingency tables and used Fisher’s exact test 
to test for significance and compute odds ratios with 95% confidence intervals. To construct 
GWAS-identified sets of genes, we used all fine-mapped SNPs from the 29 GWASs previously 
described (categorized by cell type) with a high Bayes factor for being plausibly causal (log10 BF 
≥ 2). GWAS gene enrichment was performed in a similar fashion as for ChIP-seq peaks. 
 

Gene co-expression analyses and bone marrow single cell gene expression  

To compute co-expression matrices for each trans-regulatory network, we used cDNA UMI count 
matrices with missing genes per cell imputed with MAGIC (75). As a measure of co-expression, 
the biweight midcorrelation, a weighted correlation analysis, was calculated for each pair of genes 
(76). Genes were then clustered based on their co-expression patterns by hierarchical clustering. 
Transcription factor binding site and GWAS gene enrichment was performed as described above. 
We used Human Cell Atlas single cell RNA-sequencing from 35 bone marrow donors (40) and 
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identified 27 cell types as described previously (41). Single cell data were processed with Seurat 
v.4.0.0 (77) to generate UMAP plots and heatmaps. To visualize entire trans-regulatory network 
clusters on a UMAP plot, we plotted the mean expression of all cluster genes within each cell. 
 

STING-seq power calculations for other GWASs 

We down-sampled the trans-regulatory network gRNA-to-gene tests for both rs524137 targeting 
gRNAs and the top rs73660574 and rs79755767 targeting gRNAs. All of these gRNAs were 
recovered in sufficient (high) numbers of single cells (923, 877, 841 and 761, respectively). For 
each gRNA-to-gene pair, we randomly sampled the number of cells tested with each gRNA from 
90% to 10% by 10% increments, repeating each step 100 times. We then compared the mean 
down-sampled SCEPTRE p-value for each step with the nominal significance threshold (1% FDR) 
for each gRNA’s trans-effects tests to classify whether it retained significance. We then divided 
all gRNA-to-gene pairs by their expression level and log2 fold-change into tertiles to examine at 
what number of cells could 80% of significant findings be retained.  

To perform GWAS projections, we identified the number of independent GWAS loci from five 
studies: BMI-adjusted waist-hip ratio (42), type 2 diabetes (43), schizophrenia (44), rheumatoid 
arthritis (45) and stroke (46). We assumed that statistical fine-mapping would be successful for 
each of these loci and that a single noncoding variant would be targeted, allowing us to estimate 
the number of single cells needed for STING-seq. We allowed for two gRNAs to target each 
variant and for 10 gRNAs per cell, then computed the number of single cells required for 80% 
power based on the down-sampled analyses for moderately-expressed (middle tertile) genes. 

 

 

*  *  * 
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Main figures and legends 
 

 

 

Figure 1. Overview of Systematic Targeting and Inhibition of Noncoding GWAS loci with 
single-cell sequencing (STING-seq). 
(A) STING-seq pipeline for perturbation and single-cell analysis of human genetic variants from 
genome-wide association studies (GWAS). Briefly, plausibly causal single-nucleotide 
polymorphisms (SNPs) are identified via statistical fine-mapping of GWAS. After further 
refinement of candidate cis-regulatory elements (cCREs) using key molecular hallmarks of 
regulatory elements, CRISPR guide RNAs (gRNAs) are designed to target cCREs and lentivirally 
transduced at a high multiplicity-of-infection into human cells. Using multi-modal single-cell 
sequencing, target genes for GWAS SNPs are identified using pairwise gRNA-to-gene tests. (B) 
Distribution of minor allele frequency (MAF) and the average absolute effect size for 88 targeted 
GWAS SNPs across 29 blood traits in UK Biobank (n = 361,194  participants). The absolute effect 
size is plotted for each SNP, averaged across all fine-mapped phenotypes, and the variant’s ranking 
among targetable variants is given by the color. (C) Lentiviral CRISPR inhibition (CRISPRi) with 
a single effector domain (KRAB, v1) or dual effector domains (KRAB and MeCP2, v2). (D) 
Digital PCR gene expression in human erythrocyte cells (K562) by targeting the transcription start 
sites (TSS) and known enhancers of three genes (MRPS23, SLC25A27 and FSCN1) with either 
CRISPRi v1 or v2. We observed a stronger inhibition when targeting enhancers with the CRISPRi 
v2 system and used this system for STING-seq. Error bars are s.e.m. 
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Figure 2. Significant cis-regulatory effects across 88 targeted blood trait GWAS variants.  
(A) Cumulative frequency distribution (CFD) of integrated gRNAs per K562 cell. (B) CFD of the 
number of K562 cells with each integrated gRNA. (C) Quantile-quantile plot of 1,261 gRNA-to-
gene pairs tested in cis (8.9 ± 6.1 genes tested within 500 kb per gRNA). 56 gRNA-to-gene pairs 
tested were significant (5% FDR). Non-targeting gRNA-to-gene pairs were randomly sampled 
from the same set of genes tested in cis for targeting gRNAs. (D) Volcano plot of the gRNA-to-
gene pairs tested in cis, showing the most significant gRNA per gene by significance tiers. 20 
genes were identified for Tier 1 (5% FDR for the most significant gRNA and nominal p < 0.05 for 
the other gRNA), 12 genes were identified for Tier 2 (5% FDR for the top gRNA and concordant 
effect direction for the other gRNA) and 5 genes were identified at Tier 3 (5% FDR for the top 
gRNA). In total, 33 target genes were identified for 37 variants. (E) Targeted variants with and 
without a significant cis-gene detected. Shown below are whether the indicated variants overlap 
different functional hallmarks of enhancer activity in K562 cells. (F) Rank of distance to gene for 
significant variant-gene pairs. (G) Number of significant cis-genes detected per variant.  
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Figure 3. Perturbation of GWAS SNPs with cis-regulatory effects at the CD52 and APOE/ 
APOC1 loci. 
(A) LocusZoom plot for monocyte percentage GWAS. The lead SNP that fine-mapped as plausibly 
causal (rs4526602) is indicated in red. (B) LocusZoom plot for percentage of immature red blood 
cells GWAS. The lead SNP that fine-mapped as plausibly causal (rs1065853) is indicated red. (C) 
Normalized single-cell gene expression for the top rs4526602-targeting gRNA (n = 1,278 cells), 
for non-targeting gRNAs, and all cells. All genes with detected expression are shown. CD52 is the 
only gene with a significant (* 5% FDR) change in expression in cis. (D) Normalized single-cell 
gene expression for the top rs1065853-targeting gRNA (n = 405 cells), for non-targeting gRNAs, 
and all cells. All genes with detected expression are shown. APOE and APOC1 are the only genes 
with a significant change in expression in cis.  
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Figure 4. Perturbation of cis-regulatory elements of the transcription factor GFI1B reveal a 
trans-regulatory network of genes that impact diverse blood cell traits. 
(A) Quantile-quantile plot of transcriptome-wide gRNA-to-gene pairs tested in trans (10,319 
genes tested per gRNA). Shown are the top gRNAs for rs524137 (intergenic CRE for GFI1B), 
rs73660574 (intronic CRE for GFI1B) and rs79755767 (intergenic CRE for NFE2) and non-
targeting gRNA-to-gene pairs randomly sampled from transcriptome-wide tests. (B) GFI1B 
expression was significantly decreased (* 5% FDR) when targeting either of two cis SNPs, 
rs524137 and rs79755767. (C) Volcano plot of top rs524137-targeting gRNA-to-gene pairs in 
trans. We identified 569 unique genes for the rs524137-GFI1B trans-regulatory network. (D) 
Scatter plot of expression fold-change for the 569 rs524137-GFI1B trans-regulatory genes when 
perturbing rs524137 and rs79755767. There is a high correlation between these perturbations (rp 
= 0.85) and the dosage effect (slope = 0.45) is in agreement with the difference in rs524137 and 
rs79755767 effects on GFI1B expression (Δlog2 fold-change = 0.44). (E) GFI1B ChIP-seq at the 
transcription start sites of three rs524137-GFI1B trans-regulated genes (INSIG1, NPM1 and 
BNIP3). (F) rs524137-GFI1B trans-regulated genes were significantly enriched for GFI1B ChIP-
seq peaks. Genes with increased expression [odds ratio (OR) = 2.96, Fisher’s exact test p-value 
(p) = 5.5x10-20] were more strongly enriched than genes with decreased expression (OR = 1.79, p 
= 9.3x10-6). (G) Overlap of genes closest to fine-mapped GWAS variants, grouped by the cell type 
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of the GWAS trait (platelets, white blood cells or red blood cells), for genes that are also rs524137-
GFI1B trans-regulated genes. (H) rs524137-GFI1B trans-regulated genes were enriched for 29 
blood trait GWAS loci, grouped together as platelet genes (OR = 1.68, p = 8.5x10-6), red blood 
cell genes (RBC; OR = 1.66, p = 6.0x10-7) and white blood cell genes (WBC; OR = 1.32, p = 0.01). 
In (F) and (H), * indicates p < 0.05, ** indicates p < 0.01 and *** indicates p < 0.001. 
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Figure 5. Gene co-expression analysis identifies subnetworks of GFI1B target genes that are 
expressed in multiple hematopoietic progenitors. 
(A) Co-expression matrix of rs524137-GFI1B trans-regulatory genes in K562 cells with 
hierarchical clustering. Three clusters (A, B and C) are indicated and bar underneath indicates if 
the genes had increased (blue) or decreased (red) expression upon perturbing the GFI1B CRE. (B) 
Clusters A, B and C all have significant enrichment for GFI1B binding sites, with Cluster A having 
the strongest enrichment. (C) Clusters A and C enrichments for genes mapping closest to fine-
mapped variants for WBC, RBC and platelet GWAS traits. (D) UMAP plot of human bone marrow 
cells from 35 Human Cell Atlas donors aligned into a common coordinate space. Labels and colors 
indicate distinct cell types (B 2prog: progenitor B-2 cells; RBCprog: red blood cell progenitors; 
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DCprog: dendritic cell progenitors; full list in Table S4D). Below GFI1B single cell expression 
projected onto the UMAP plot is shown, indicating that GFI1B is most highly expressed in red 
blood cell progenitors and megakaryocyte progenitors. (E) Mean expression of Cluster A genes (n 
= 159 genes) per single cell, projected onto the UMAP plot in (C). The cell types with the highest 
Cluster A expression patterns are bone marrow progenitor cells, whereas expression in 
differentiated cells is lower. (F) Expression of genes in Cluster A by cell type in 35 Human Cell 
Atlas bone marrow donors. (G) Mean expression of Cluster C genes (n = 254 genes) per single 
cell, projected onto the UMAP plot in (C). The cell types with the highest Cluster C expression 
patterns are RBC progenitors and megakaryocyte progenitors. (H) Expression of genes in Cluster 
C by cell type in 35 Human Cell Atlas bone marrow donors. * indicates p < 0.05, ** indicates p < 
0.01 and *** indicates p < 0.001. 
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