# **GGSB Prelim Q5 – Hang Chen**

#### What is colocalization:

- Two association analyses (GWAS & eQTL)
- Associated SNPs are overlapped

#### Why colocalization:

- GWAS lack molecular mechanisms
- GWAS hits are usually non-coding

#### How to do colocalization:

Eyeballing?

We may not conclude a SNP-associated gene is causal for the same SNP-associated disease, but we can calculate and rank the probabilities.



(Zhang Lab@Columbia, 2019)

### Question a)

#### 1. Pleiotropy



# 2. LD



#### 3. Intermediate

(X=gene, Y=disease)

#### Colocalization analysis

- Sequencing and routine QCs
- Two separate association analyses
- For each region, convert the association results to binary (each pair is a configuration, S)



Then, test the five hypothesis:

For a region,

- H<sub>0</sub>: No association with either trait
- H<sub>1</sub>: Association with trait 1, not with trait 2
- H<sub>2</sub>: Association with trait 2, not with trait 1
- H<sub>3</sub>: Association with trait 1 and trait 2, two independent SNPs
- H<sub>4</sub>: Association with trait 1 and trait 2, one shared SNP
- Assume there are Q SNPs in a region, and for each SNP, the probability of that it is associated with trait 1 is  $p_1$ , with trait 2  $p_2$ , with both traits  $p_{12}$ , with no traits  $p_0$ .

$$(p_0 + p_1 + p_2 + p_{12} = 1)$$

### Question b)

Probabilities for each configurations:

- 
$$P(S_0) = (p_0)^Q$$

- 
$$P(S_1) = (p_0)^{Q-1} \cdot p_1$$

- 
$$P(S_2) = (p_0)^{Q-1} \cdot p_2$$

- 
$$P(S_3) = (p_0)^{Q-2} \cdot p_1 \cdot p_2$$

- 
$$P(S_4) = (p_0)^{Q-1} \cdot p_{12}$$

The *coloc* summarizes the results of the five hypotheses as posterior probabilities (PP0, PP1, PP2, PP3, PP4).

Bayes' theorem:

$$P(A|B) = \frac{P(B|A) \cdot P(A)}{P(B)}$$

- posterior probability: P(A|B)
- prior probability: P(A)

- Bayes factor:  $\frac{P(D|S_4)}{P(D|S_0)}$  (the ratio of the likelihood of one particular hypothesis to the likelihood of another)
- Approximate Bayes factor: can be calculated from summary statistics (p-values) using Wakefield's method.

### Question c)

Deriving the PPs as a function of BFs:

$$\begin{aligned} & \text{PP4} = \text{P}(\text{H}_4|\text{D}) & \text{D: observed data} \\ & = \frac{\text{P}(\text{D}|\text{S}_4) \cdot \text{P}(\text{S}_4)}{\text{P}(\text{D})} & \\ & = \frac{\text{P}(\text{D}|\text{S}_4) \cdot \text{P}(\text{S}_4)}{\sum_{\text{S} \in \text{S}_h} \text{P}(\text{D}|\text{S}) \cdot \text{P}(\text{S})} \end{aligned}$$

Reformatting to BF

$$= \frac{\frac{P(D|S_4)}{P(D|S_0)} \cdot P(S_4)}{\frac{\sum_{S \in S_h} P(D|S)}{P(D|S_0)} \cdot P(S)}$$

$$= \frac{BF_4 \cdot P(S_4)}{\sum BF_h \cdot P(S)}$$

Slightly different from the equation in the *coloc* paper, but mathematically equivalent

$$PP4 = \frac{BF_4 \cdot P(S_4)}{\sum BF_h \cdot P(S)}$$

## About the prior:

- **coloc**:  $P_1 = 10^{-4}$ ,  $P_2 = 10^{-4}$ ,  $P_{12} = 10^{-6}$  (meaning: 1/100 GWAS hits are also eQTL)
- **eCAVIAR**:  $P_{12} = P_1 \cdot P_2$  (two fine-mappings) (meaning: no eQTL enrichment in GWAS hits comparing to the whole genome)

### About eQTL enrichment in GWAS hits:



# Question e): an extreme example



- Assume the two SNPs are in perfect LD.
- We can only know that one of them is associated with trait-1 and one of them with trait-2.
- If there is no enrichment, the probability of colocalization in this region:

$$\frac{1}{2} \cdot \frac{1}{2} + \frac{1}{2} \cdot \frac{1}{2} = \frac{1}{2}$$

• If the enrichment level is extremely high, the probability of colocalization in this region:

$$\frac{1}{2} \cdot 1 + \frac{1}{2} \cdot 1 = 1$$

 PPs are sensitive to priors. In the eCAVIAR case (two fine-mappings), fewer colocalization events will be called.

## Question d/f/g) *enloc*

- Main idea: evaluate eQTL enrichment level in GWAS hits from the original data.
- Method: Regress GWAS annotation odds ratio on eQTL annotation

$$\log \left[ \frac{P(\gamma_i = 1)}{P(\gamma_i = 0)} \right] = \alpha_0 + \alpha_1 \cdot d_i$$

- $\gamma_i$ : GWAS annotation;  $d_i$ : eQTL annotation
- $\alpha_1$ : indicates the enrichment level (an empirical way to assign the prior for PPs)

# Relationship between *coloc* and *enloc*:

- *coloc* is a special case of *enloc*.
- coloc requires artificially assigned priors, or in other words, it bypasses the enrichment level assessing.
- enloc calculate the empirical priors from the data, which provides more accurate colocalization events calling.