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Lecture Objectives

Learn general statistical methods for meta-analysis: effect
size-based (fixed and random effects).

Application of meta-analysis in GWAS.

Learn the basic concepts for statistical fine-mapping analysis.
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Meta-Analysis combines multiple studies to increase power

Most risk loci of
common disease were
discovered by large-scale
meta-analysis of GWAS.

Greatly increase the
sample size.

Only require
summary statistics:
much easier to
share the data
across studies.
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Can we just count number of significant studies?

This is misleading:

Counting loses quantitative information.

All studies, regardless of sample sizes, contribute equally.

Power not taken into account: when the power is 50%, only
50% studies will show significance even if there is an effect!

The GWAS example: vote counting suggests “conflicting” results,
9/17 studies have p > 0.05. Proper meta-analysis:
p = 6.7× 10−20.
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Meta-analysis is often based on effect sizes, rather than
p-values

Why not use p-values? Lose power information: all studies
contribute equally.

Effect size: strength of relationship between two variables, β in
Y = Xβ + ε. Effect size in GWAS:

Binary trait: log odds-ratio (or relative risk).

Continuous trait: change of Y by one copy of alternative
alleles.

Problems that meta-analysis addresses:

What is the effect size? Is it significantly different from 0?

Are the effect sizes consistent across multiple studies?
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Procedure of effect size-based meta-analysis

For each study, obtain the estimated effect size and its
standard error.

Assign study weights: based on the standard errors, which
largely depends on the sample size.

Summary effect is the weighted average of all effects.

Determine the distribution of summary effect and its
statistical singificance.

Two approaches for weighing and combining studies: fixed effects
or random effects.
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Meta-analysis results can be displayed with Forest Plot
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Fix Effects (FE) meta-analysis estimates a single common
effect

Assumption 1. All
studies share a common
true effect size.

Assumption 2. The
observed effect in each
study varies from the
true effect because of
sampling error.
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The observed effect sizes follow normal distributions

Consider a simple regression: Y = Xβ + ε, where ε ∼ N(0, σ2).
The estimated effect of β, β̂, follows the distribution:

β̂ ∼ N(β, s2), s2 =
σ2

n · V̂ar(X )

where n is sample size, and V̂ar(X ) is the sample variance of X .

The sampling variance of the estimated effect size (s2) is
proportional to the inverse of sample size (n).
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Fix Effects (FE) model estimates the true effect size by
Maximum Likelihood

Model: let Yi be the observed effect size of study i , 1 ≤ i ≤ k, and
Vi its variance. The true effect size is µ. Our model is written as:

Yi ∼ N(µ,Vi )

The likelihood function:

L(µ) = P(Y |µ) =
∏
i

P(Yi |µ)︸ ︷︷ ︸
studies are independent

∝ exp

[
−
∑
i

(Yi − µ)2

2Vi

]
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Fix Effects (FE) model estimates the true effect size by
Maximum Likelihood (II)

Maximize the likelihood function L(µ) now becomes:

Minimize:
∑
i

(Yi − µ)2

2Vi

Let wi = 1/Vi , the MLE of the summary effect is:

µ̂ =

∑
i wiYi∑
i wi

=
∑
i

wi∑
i wi︸ ︷︷ ︸

weight of study i

Yi

Exercise: show this is the MLE.
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FE meta-analysis weights studies by the inverse of sample
sizes

The weight of study i , wi , is inversely proportional to sampling
variance, and proportional to sample size Ni :

wi =
1

Vi
,Vi ∝ 1/Ni ⇒ wi ∝ Ni

This is called Inverse Variance Weighting.

The FE estimator µ̂ =
∑

i wiYi/
∑

i wi , can also be used to derive
the standard error of µ̂.
Hint: µ̂ is a linear combination of normally distributed random
variables.

12 / 39



FE meta-analysis improves the statistical power: an
example
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Random effect models relaxes the assumption of identical
effect sizes

Example 1. A pharamaceutial company tests the drug effect on
1000 patients with 10 studies. All studies were identical in patient
pool, drug dosage, procedure, researchers and so on.

Example 2. 10 different studies were performed independently by
ten different groups to assess the effect of a drug. The studies
could be different in patient pool, procedure, etc.

Fixed Effects model assumes identical true effect sizes, and
Random Effects Model assumes the effects are similar but could
be somewhat different.
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Random Effects (RE) Model assumes effect sizes follow a
common distribution

Assumption 1. True effect sizes of different studies (circles) can
be different, but are sampled from a common distribution.

Assumption 2. The observed effect size (square) in each study
varies from the true effect because of sampling error.
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The estimated effect under RE Model is still a weighted
average across studies

Model: let Yi be the effect size of study i , and Vi its variance. Let
µi be the true effect of study i . Our model:

Yi |µi ∼ N(µi ,Vi ) µi ∼ N(µ, τ2)

Define study weight as:

w∗
i = 1/(Vi + τ2)

The MLE of µ is given by:

µ̂ =

∑
i w

∗
i Yi∑

i w
∗
i

τ2 can be obtain by MLE, or from other estimators. It is a
measure of heterogeneity of studies.
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Weights are more balanced under RE model

Comparison of weighting schemes:

wfixed
i = 1/Vi w random

i = 1/(Vi + τ2)

Under fixed effects model, the weight of a study is entirely
determined by sample sizes, thus we can largely ignore information
from smaller studies.

Under random effects model, each study provides some
information of the population effect (µi ∼ N(µ, τ2)), so smaller
studies under the RE model make larger contributions than under
the FE model.
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GWAS meta-analysis workflow
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GWAS Meta-Analysis often uses Fixed Effects model

Inverse variance weighting: wi = 1/Vi ∝ Ni .

Summary effect:

µ̂ =

∑
i wiYi∑
i wi

Significance of summary effect: Z -score based on the standard
error of the summary effect.

Most GWAS meta-analysis use Fixed Effect Model.
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Consider RE model when the studies are very
heterogeneous

Common sources of heterogeneity:

Variation in phenotype definition. Ex. mental disorders are
harder to define and standardized.

Variation of ancestry across studies. The LD between the
causal and tag SNPs may be different across different
populations.

Other difference between studies: environmental exposure, sex
difference.

However, using RE model reduces the power compared with FE
model, when there is not much heterogeneity.
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Summary: Meta-analysis

Meta-analysis uses estimated effect sizes, and is generally
better than the use of p-values.

FE model: inverse variance weighting.

RE model: better capture heterogeneity of effect sizes.

In GWAS: FE analysis is the most popular, but consider the
RE model when the studies are heterogeneous.

21 / 39



Single causal variant can drive association signals in
multiple SNPs

Causal variant or risk variant: the true disease-causing variant.

Figure: The FTO locus of obesity (BMI). Arrows shows the likely causal
SNP: eQTL of a nearby gene IRX3 [Smemo et al, Nature, 2014]
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Lead SNPs are often not causal SNPs

Because of sampling errors: a SNP in close LD with the causal
SNP may have similar or even better association statistics.

Simulations with 1000 cases and 1000 controls: at effect size 1.1
and AF 5%, causal variant has 2.4% chance of being the lead SNP.

The vast majority of variants discovered by GWAS have small
effect sizes log-OR < 1.1.
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Some regions may have multiple causal SNPs

Figure: Simulated data with 2 causal variants (red) [Hormozdiari et al,
Genetics, 2014]

Using the top SNP may get the wrong causal SNP, and miss
additional signals(s).
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Heuristic approach is to take lead SNPs and nearby ones

Limitation: the LD threshold is arbitrary; may have many nearby
SNPs; not quantify the statistical evidence.
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Conditional regression is often used to find multiple causal
signals

Regression analysis on a SNP j by conditioning on the lead SNP:

Y = Glead · βlead + Gjβj + ε

A SNP passing the threshold will be chosen.

Repeat this analysis: at each step, condition on all SNPs chosen at
previous steps.
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Example of conditional regression approach
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Conditional regression approach cannot guarantee to find
causal variants

Lead SNPs may not be causal: wrong decision at the
beginning.

It is unclear how to account for multiple testing and choose
the threshold: at each step, many hypothesis are tested.

Low power of detecting the secondary SNP.

What if we apply conditional regression to the example in Slide 24?
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Fine-mapping causal variants is a multiple regression
problem

Regression model: let yi be the phenotype of sample i , 1 ≤ i ≤ N
and Xij the genotype of SNP j . The phenotype is related to the
genotypes by:

yi =

p∑
j=1

Xijβj + εi = Xi︸︷︷︸
Genotype vector

β + εi , εi ∼ N(0, σ2).

Our intuition is that for most SNPs, βj = 0. So finding causal
variants is equivalent to find one or few SNPs with βj 6= 0.
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Common regression methods are not ideal for fine-mapping

How do we infer βj ’s?

Standard multiple regression using least square estimator
(MLE): difficult to apply because the number of variants are
large and often highly correlated.

Shrinkage methods (Lasso): cannot account for uncertainty.
Ex. when two variants are highly correlated, Lasso will
randomly choose one.
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Introducing indicator variables helps identify causal variants

Indicator variables: let γj ∈ {0, 1} be the indicator of whether
SNP j is causal. γj = 0 implies βj = 0. γj ’s are random variables,
to be inferred from the data.

Causal configuration: γ ∈ {0, 1}p represents the status of all p
SNPs.
Ex. a region with 4 SNPs, γ = {0, 1, 0, 0} or {0, 0, 0, 1}.

Problem: given data D = {Xi , yi , 1 ≤ i ≤ N}, infer P(γ|D), or
P(γj = 1|D) for each SNP j .
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Obtaining the posterior distribution of γ

From the Bayes rule:

P(γ|D) =
P(γ)P(D|γ)

P(D)
∝ P(γ)︸ ︷︷ ︸

Prior

· P(D|γ)︸ ︷︷ ︸
Likelihood

Prior: each SNP has a small prior probability of being a causal
variant, γj ∼ Bernoulli(π), then P(γ) =

∏
j π

γj (1− π)1−γj .

Likelihood: assess how well the causal variant configuration
explains the data.
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Details of likelihood computation (advanced materials)

Our regression model is defined in terms of β, the effect sizes, so
we need to relate the causal configuration γ to β. We assume:

βj = 0 if γj = 0; βj ∼ N(0, γ2
β) if γj = 1.

Likelihood or model evidence of γ needs to marginalize β:

P(D|γ) =

∫
P(D|β) · P(β|γ)dβ

P(D|β) is given by the standard linear regression

P(D|β) = P(Y|X, β) ∝ exp

[
− 1

2σ2

∑
i

(yi − Xiβ)2

]
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Finding best configurations is computationally challenge

In a region with p SNPs, the number of configurations is 2p.

Possible approaches:

Enumeration of configurations: up to maximum number of
causal SNPs. CAVIER.

Stochastic search: FINEMAP.

Variational Bayes: similar to conditional regression, but
accounts for the uncertainty at each step. SuSiE.
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Results of fine-mapping are summarized as posterior
inclusion probabilities (PIPs)

PIP: the posterior probability that a SNP is causal, summing over
all possible models. Often used to rank SNPs.

P(γj = 1|D) =
∑
γ

[γj = 1]︸ ︷︷ ︸
1 if γj=1;0 otherwise

·P(γ|D)

PIPs depend on both GWAS statistics and LD patterns:

In a high-confidence region with a single causal variant, PIPs
of all SNPs should sum to 1.

A high-confidence region with a single causal SNP: suppose
the causal SNP is in high LD with k − 1 other SNPs, then
PIP of each SNP ≈ 1/k .
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Bayesian credible set with a single causal variant

Credible set: the minimum set of variant that contains the causal
variant with probability α (typically, 95%).

Define the “confidence level” of a variant set S as the total
posterior probability of all models allowed under the set S . Ex.
S = {A,B,C}. The “confidence level” of the set is simply:

ρ = PIPA + PIPB + PIPC

If ρ ≥ α, and the set cannot be made smaller, it’s a credible set.
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Bayesian credible set with multiple causal variants

Different definitions have been used in literature. We use the one
based on SuSiE: each causal variant has a credible set. So a locus
may have multiple credible sets, each capturing one signal.
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Summary: Fine-mapping

Heuristic approach and conditional regression have limitations.

Bayesian approach to fine-mapping: infer the posterior of
causal configurations.

Results of fine-mapping: PIPs and credible sets.
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