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Abstract

Transcriptome-wide association studies (TWAS) using predicted expression have identified thousands of
genes whose locally-regulated expression is associated to complex traits and diseases. In this work, we
show that linkage disequilibrium (LD) among SNPs induce significant gene-trait associations at non-causal
genes as a function of the overlap between eQTL weights used in expression prediction. We introduce a
probabilistic framework that models the induced correlation among TWAS signals to assign a probability
for every gene in the risk region to explain the observed association signal. Our approach yields credible sets
of genes containing the causal gene at a nominal confidence level (e.g., 90%) that can be used to prioritize
and select genes for functional assays. Importantly, our approach remains accurate when expression data
for causal genes are not available in the casual tissue by leveraging expression prediction from other tissues.
We illustrate our approach using an integrative analysis of lipids traits where we correctly identify known
causal genes.

Main

Transcriptome-wide association studies (TWAS) using predicted expression have been proposed as an ap-
proach to identify genes involved with complex traits and diseases.!™ Since TWAS based on predicted
expression only relies on the genetic component of expression, it can be viewed as a test for non-zero local
genetic correlation between expression and trait."'# Significant genetic correlation is often mis-interpreted
as an estimate of the effect of SNPs on trait mediated by the gene of interest. While enticing, this interpre-
tation requires very strong assumptions that are likely violated in empirical data, due to pleiotropic effects
of SNPs on trait mediated through other genes.! 3° 19 Therefore TWAS has been mostly utilized as a test
of association to identify risk regions where eQTLs are likely to be involved in disease risk.

In this work, we show that TWAS gene-trait association statistics at a known risk region are correlated as
a function of LD among SNPs and eQTL weights used in the prediction models. This effect is similar to
LD-tagging in genome-wide association studies (GWAS) where LD within a region induces associations at
tag SNPs (yielding the traditional Manhattan-style plots). Even in the simplest case where a single SNP
causally impacts the expression of a gene which in turn causally impacts a trait, LD among SNPs used
in the eQTL prediction models induce significant gene-trait associations at nearby non-causal genes in the
region. The tagging effect is further exacerbated in the presence of multiple causal SNPs and genes. As an
illustrative example consider a risk region with 6 genes where a single SNP is causal for a single gene which
impacts trait (no other causal variants are present at this region, see Figure 1). Although genes 3 and 4
in Figure 1 have non-overlapping prediction weights due to different genetic regulation, LD among SNPs
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Figure 1: Illustration of the induced correlation structure for predicted expression. a) Top:
Manhattan plot indicating strength of SNP association with trait. Middle: Expression weight matrix for 6
genes in the same region, with the causal gene in red. Each row corresponds to a gene and each column
represents a SNP. Color indicates magnitude of eQTL effect. Bottom: The correlation structure (LD) across
SNPs. Darker color indicates stronger correlation. b) Top: TWAS Manhattan plot indicating strength of
predicted expression association with trait. Bottom: Induced correlation of predicted exprsssion. Darker
color indicates stronger correlation between predicted expression levels. Dashed lines indicate the genome-
wide (transcriptome-wide) significance threshold.

with non-zero prediction weights induce correlations in the TWAS statistics at genes 3 and 4. This effect
is magnified when the expression weights coming from eQTL studies overlap either due to co-regulation or
noise in the eQTL weight estimation procedure.

To disentangle between causal and tagging gene-trait associations at a TWAS significant region, we analyt-
ically derive the covariance structure among the TWAS statistics as function of LD and eQTL weights used
in prediction. Next, we model the entire vector of marginal TWAS association statistics (ztwas) at all genes
in the region (TWAS significant and not-significant) using a multivariate Gaussian distribution parametrized
by the effect sizes at causal genes (A) and the correlation structure induced by expression weights (W) and
LD (¥gnp) as

Ziwas | A, W, Zp ~ N(STIWTS, , WS\ ST'WTS,, , WS™),

where S is a scaling factor (see Methods). To allow for genes without prediction models in the causal tissue
(either due to QC and/or low power in eQTL studies), we include prediction models from proxy tissues
for such genes (see below). We employ standard Bayesian approaches to compute the marginal posterior
inclusion probability (PIP) for each gene in the region to be causal. To avoid overfitting, we integrate out
the unknown causal effects A using a a multivariate Gaussian prior (see Methods). Lastly, we use PIPs
to compute p-credible gene sets that contain the causal gene with probability p.!' Our approach, FOCUS
(Fine-mapping Of CaUsal gene Sets), mirrors standard probabilistic GWAS fine-mapping approaches that
yield p-credible SNP sets.!!1~13

To characterize the predicted expression correlation structure and to validate our framework, we used exten-
sive simulations starting from real genotype data and eQTL weights (see Methods). Under null data where
genes have eQTLs but do not impact downstream trait we find FOCUS adequately controls false positives
(see Figure S1); for example, 90% credible sets contained the null model in 99% [95% CI 96 — 100%)] of
simulations. Next, we investigated simulations in which gene expression causally impacts trait (see Meth-
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Figure 2: Causal Gene Performance in simulations. a) The total posterior density of computed
credibile gene sets closely matches that of the actual proportion of causal genes captured. b) We estimated
the empirical ROC curves for simulation results using the posterior probability for FOCUS and ranking
based on TWAS x? statistics. Here, “true positive fraction” refers to the fraction of underlying causal genes
captured in the causal set. Similarly, “false positive fraction” refers to the fraction of non-causal genes falsely
included in the causal set. ¢) Snapshot of the true positive fraction captured at 5% false positive fraction.

ods). FOCUS accurately captures the causal gene at all posterior densities for the credible set; for example,
to capture 90% of causal genes, 47% genes need to be selected in the credible set when ranking on PIPs
(see Figure 2). For completeness, we also compared with the simple gene rank from TWAS p-values. We
find FOCUS outperforms TWAS p-value ranking in prioritizing and capturing underlying causal genes (see
Figure 2); for example, at a false positive rate of 5%, FOCUS identifies ~50% more causal genes than a
simple rank of marginal TWAS statistics. We observed similar results when comparing with with COLOC,*
a formal colocalization test (see Figure S2; see Supplementary Note). Taken together, we find that FOCUS
accurately prioritizes causal genes under a variety of scenarios when expression mediates SNP effects on
trait.

We next performed simulations in which we excluded the simulated causal gene from the analysis; we
simulated TWAS associations using real eQTL weights estimated from multiple tissues and masked the
causal gene (i.e. tissue-specific eQTL weights with non-zero effect on trait) from the analysis (see Methods).
First, we confirmed that in this scenario nearby genes can show significant associations as function of LD
and eQTL weights. As hypothesized, we found a strong relationship between the strength of LD and the
average TWAS association (P < 2 x 10716; see Figure S3). Next, we investigated the performance of
FOCUS when the causal gene in the correct tissue is missing, but exists in alternative tissues. In real data
a gene may act through a tissue that is difficult to assay in large sample sizes, but may have similar cis-
regulatory patterns in tissues that are easier to collect (e.g., blood, LCLs). Indeed, several studies! 4 15:16
established cis-regulated gene expression levels exhibit high genetic correlation across tissues and functional
architectures. The intuition in this approach is that the loss in power from using the correlated tissue is offset
by the gain in power due to its larger sample size. We found only a minor loss in power using proxy-tissue
eQTL weights compared with causal-tissue weights, finding causal genes in the 90% credible set 68% of the
time. Collectively, these results demonstrate that FOCUS is relatively robust to model perturbations and
performs well when underlying tissue-specific causal genes are represented by proxy tissue eQTL weights.

Having validated our fine-mapping approach in simulations, we illustrate FOCUS by re-analyzing a large-
scale GWAS of lipids measurements'” with eQTL weights from adipose tissue. We assume the causal tissue
for expression driving lipids is adipose given its well-understood role in lipids metabolism.'® To account for
missing gene prediction models, we incorporate gene expression models for genes not predictable from the
adipose tissue across 47 reference panels measured from 45 tissues; in detail, for a gene without a predicted
model in adipose tissue, we include the prediction model with best accuracy across all other tissues (see
Table S1; see Methods). Multi-tissue TWAS identifies 449 (276 unique) significant genes at 142 (97 unique)
independent 1Mb regions after accounting for the total number of per-trait tests performed (P < 0.05/15, 276;
see Figures S4-S7; Table 1; Table S2). We applied FOCUS at the 142 1Mb TWAS risk regions (see Methods)
to estimate credible sets of genes at each of the loci. First, as a positive control, we examined the 1p13
locus for LDL, as this region harbors risk SNP rs12740374 which has been shown to perturb transcription
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TWAS risk Overlapping TWAS 95% credible 90% credible

Trait regions gene models genes set genes set genes
HDL 37 1040 133 137 90
LDL 36 930 102 106 89
TC 45 1219 133 160 123
TG 24 700 81 94 73

Table 1: Summary of identified TWAS risk regions. A risk region is defined to be a 1Mb interval
overlapping a transcriptome-wide significant gene. The number of overlapping gene models counts the total
number of models for predicted gene expression at TWAS risk regions. TWAS genes refers to the total number
of transcriptome-wide significant genes at these regions (similarly for genes prioritized by fine mapping).
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Figure 3: Fine mapping of lipids TWAS risk regions. a) Number of genes with predicted expression
at TWAS risk regions for each lipids trait. b) The 90% credible gene set for most lipids TWAS risk regions
contained a single gene. c¢) Average PIP across risk regions according to ranking within each credible set.

of SORT1 and impact downstream LDL levels.'® Reassuringly the 90% credible set contained 5 genes which
included SORT! (see Table 2).

Next, we investigated whether the credible set analysis improved the resolution in causal gene identification
on average. We observed 2.2 genes on average within the 90% credible set (see Figure 3; Table S3), a
reduction from an average of 3.2 significant TWAS genes per region. For example, at locus 1p36.11 the
90% credible set for HDL contained only ZDHHC18 compared with 5 TWAS significant genes. We found
the average highest PIP across credible sets was ~80% and decreased exponentially for lower ranked genes
(see Figure 3). Interestingly, we also find instances in which the credible set does not contain the top gene.
For example, at the region 19p13.11 for LDL the top TWAS gene is GATAD2A (Piyas = 8.65 x 10713,
PIP = 69.9%; a gene involved in transcriptional repression®’), whereas the top fine mapped gene was CTC-
559E9.6 (Pyyas = 1.47 x 1078, PIP = 99.5%; a long intergenic non-protein coding RNA2!). Computing
marginal posterior inclusion probabilities enables us to estimate the expected number of causal genes for
lipids traits at risk regions. We applied this to all lipids risk regions and found 1.3 genes on average, which
suggests that most regions can be explained by a single gene affecting downstream lipids levels (see Figure
S8). We note that we observe a long tail with in the distribution of expected causal genes, with 21% regions
harboring greater than 2 causal genes in expectation. Next, we investigated regions whose 90% credible sets
contained the null model (i.e. regions with weaker evidence for models of gene expression driving risk). We
found only 4/142 instances of the null model captured in credible sets (see Table S3), which suggests the
majority of signal at these regions can be explained due to cis-regulated expression levels.
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Gene Marginal PIP  ziwas Expression Reference
RP5-1160K1.5* > 0.99 9.317 Proxy (GTEx:Exposed Lower leg)
GNAI3* > 0.99 -6.311 Proxy (YFS:Whole Blood)
CELSR2* > 0.99 10.431 Adipose (METSIM)
SORTTI* > 0.99 -9.467 Proxy (NTR:Whole Blood)
PSRCT1* 0.93 -4.70f Adipose (METSIM)
RP11-20024.4 0.065 -7.911 Proxy (GTEx:Prostate)
AMIGO1 < 0.01 0.72 Adipose (METSIM)
ATXN7L2 < 0.01 7.477 Proxy model (GTEx:Testis)
SYPL2 < 0.01 0.71 Adipose (METSIM)
TMEM167B < 0.01 4.49 Proxy (CMC:Brain)
AC000032.2 <0.01 5.271 Adipose (GTEx)
PSMAS5 < 0.01 3.04 Proxy (YFS:Whole Blood)
WDR,7 <0.01 5.011 Proxy (GTEx:Nerve Tibial)
CYB561D1 < 0.01 -0.29 Proxy (YFS:Whole Blood)
TAF13 < 0.01 -0.55 Adipose (METSIM)
GSTMS5 < 0.01 -0.90 Adipose (METSIM)
RP5-1065722.8 < 0.01 -4.02 Adipose (GTEx)
KIAA132] <0.01 4.44 Adipose (METSIM)
AMPD2 < 0.01 0.85 Proxy (GTEx:Testis)
SARS < 0.01 -0.075 Adipose (METSIM)
GSTM3 < 0.01 2.93 Adipose (METSIM)
CLCcCt < 0.01 1.86 Proxy (CMC:Brain)
GSTM,/ <0.01 4.65 Adipose (METSIM)
GSTM1 < 0.01 3.46 Adipose (METSIM)
SCARNA2 < 0.01 -3.67  Proxy (GTEx:Skin - Sun Exposed Lower leg)
RP4-785C1.4 < 0.01 -1.35 Adipose (GTEx)
GSTM?2 < 0.01 3.29 Adipose (METSIM)

Table 2: Fine mapping of LDL at 1p13. Tissue reference refers to the expression panel used to train
predictive models of gene expression. ziyas is the association strength with LDL levels. Marginal posterior
inclusion probabilities are the non-normalized PIP values for each gene. * indicates gene in 90% credible set.
TWAS Z-scores are the association strength under the TWAS test. T indicates gene is transcriptome-wide
significant at Piyas < 0.05/15,276.
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Discussion

In this work we presented FOCUS, a fine-mapping approach that estimates credible sets of causal genes using
prediction eQTL weights, LD, and TWAS/GWAS summary statistics. We demonstrated FOCUS adequately
controls false positives in null simulations and outperforms naive p-value ranking in identifying causal genes
when genes at a region impact downstream trait. We applied FOCUS to four lipids TWASs (e.g., HDL,
LDL, triglyceride, and total cholesterol levels) and found SORT! correctly identified as a putative causal
gene. Interestingly, our real-data results in lipids suggests most regions can be explained by a single causal
gene, but significant number of “hotspot” risk regions where multiple causal genes may be influencing trait.
Overall, our results highlight the utility of using credible sets in prioritizing causal genes by jointly assigning
posterior probabilities, that are both easily interpretable and comparable across genes and regions.

In addition to providing a quantification of the confidence in how many genes need to be validated to identify
the causal genes in the region, our probabilistic approach yields several benefits. First, FOCUS naturally
allows for multiple causal SNPs and genes while integrating gene-effect sizes using conjugate priors; this is
particularly important as recent works have shown that allelic heterogeneity (i.e. multiple causal genes and
SNPs at a region) is pervasive in both eQTL and GWAS.6:22 Second, our approach only requires summary
association statistics from linear predictive models associated with complex trait or disease. In this work, we
investigate predicted gene expression, but FOCUS could generally be applied to other predicted-molecular
traits with an established role in complex trait etiology (e.g., alternatively spliced exons??24). For example,
several recent works have supporting evidence for splice variation playing an important role in driving risk
of schizophrenia.?% 26

We showed our approach is well calibrated under various null simulations and robust to perturbations in
model assumptions; however, several limitations still exist. First, our model assumes that complex trait or
disease risk is a linear function of expression levels as causal genes. Several works have demonstrated that risk
prediction using estimated or observed expression levels can outperform standard SNP-based models,2 27
which supports a linear model of gene expression impacting complex trait or disease risk. However, higher-
order models that capture complex regulatory networks of transcription factors and gene expression may
also reflect underlying biology. As reference gene expression datasets grow in size, accurately modelling
these assumptions may be possible. Second, when the causal gene is untyped in the data, our approach will
inflate the posterior probabilities at tagging genes. We attempt to alleviate this scenario by incorporating
gene models measured in proxy tissues. Third, we took a tissue-prioritizing approach by preferentially using
eQTL weights in adipose tissue given its known role in lipids metabolism'® for our real-data analysis. This
approach may not always be possible for complex traits or diseases with less understood biology. However,
recent work has shown that the most relevant (i.e. causal) tissue for complex traits can be accurately
estimated using eQTL data.?® Despite our modelling assumptions and limitations, our approach is a step
towards more accurately prioritizing gene sets through our credible set notion.

Methods

Sampling distribution of marginal TWAS summary statistics

Here we describe the sampling distribution of marginal Z-scores obtained from TWAS. Let expression levels
for n individuals at m genes G € R™*™ be defined as a linear function of genotype and environment, which
is given by G = XW + E, where X € R™"*? is the centered and standardized genotype matrix at p SNPs,
W € RP*™ is the eQTL weight matrix, and E € R™*™ is environmental noise. In practice weights W
are unknown and must be estimated (e.g., BSLMM,?° GBLUP3" 31) Let predicted expression be defined
as G = XW when W is estimated from data. We standardize G to have unit variance, represented by
G = GS™!, where S = dlag(HGl ..., HGmH) We model complex trait as linear combination of predicted
expression at m genes and an environmental component as y = Go + € where a is the vector of causal
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effects at these m genes, and € ~ f(0,02I,) is random environmental noise. For notational simplicity we
drop the hat from W and use W throughout.

We compute the marginal association z; of gene i on trait y through a transcriptome-wide association study
as,

1 =~ 1 1
Gly = XWS Ny =~ S IWTXTy =
Te/N 24 ae\/ﬁ( )iy v Y

STIWTXT(Ga + €)

Zi =

1
Te/1 Ge/n

1 _ _ _ Vg _
= o [S;'WTXTXWS 'a+8S;'WTXTe] = Tesi "WTS,, WS o + e\fsl "WTXe.

where Xg,, = n7!XTX is the SNP correlation (LD) matrix. The marginal association statistics for all m
genes are determined by,

1
Ziwas = \/>S W', , WS la+ ——S'WTXTe.
P
Oe Te/n

Assuming weights W and causal gene effects a are fixed, we can compute the expectation and variance of
the association statistics as,

E[Ztwas | W] = [*fs 'WTS, WS ta | W] + E| STIWTXTe] = @s—lezsnpws—la
Oe Uef Oe
1
V[ztwas | W] = =S "WTX V[ XWS™! =S'W'E,,, WS~
azn

e

To simplify notation we re-parameterize the causal effects as a non-centrality parameter (NCP) at the causal
genes by A = ‘Fa and denote predicted expression correlation as X, = ST'WTE,, WS~ The NCP A
governs the statlstlcal power of rejecting the null of no effect of predicted expression on trait (a =0). If we
assume € ~ N(0,02L,), then our sampling distribution for zya.s is given by,

Ztwas | A; Zpe ~ N(EpeAa EpE)'

This formulation asserts that observed marginal TWAS Z-scores are the linear combination of NCPs at
causal genes convoluted through the correlation structure of predicted expression 3,.. Likewise, the resulting
correlation structure X,c = WTESHPW is the the product of the underlying LD structure of SNPs X, and
the weight matrix learned from expression data W. Computing the likelihood of ziyas as described requires
knowing A and X, which are unknown a-priori; however, we can estimate 3, using available reference
LD panels (e.g., 1000 Genomes>?) and estimated expression weights W. This procedure should be unbiased
when GWAS individuals are sampled randomly from the same population. This assumption may not be
met when diseased individuals are ascertained on for increased statistical power. Estimating A directly from
the data is likely to overfit, as our model is over specified. To bypass this issue, we treat A as a nuisance
parameter and assume that A | ¢, 02 ~ N(0,D.) where
D. = diag(no? - ¢) + diag(d - (1 — c)),

o2 is the prior causal effect variance, ¢ is a binary vector indicating if ith gene is causal, and § = 1076 is
small noise is to ensure that D, is full rank. Incorporating this prior for causal NCPs enables us to integrate
out A, which results in the variance component model,

Ziwas ‘ ZJpe» C, Ug ~ N(07 zpe + EPeDczpe)'

Under this model the variance in zyas is due to uncertainty from finite sample size (2p.) as well as uncertainty
in the underlying causal NCPs (3 ,.D¢Xe). In principle, we can estimate o2; however, this comes at a
significant computation cost, as estimation would need to be performed for each causal conﬁguratlon c. To
mitigate this we use set no? = 13, which is similar to what we observe genome-wide in real data.

Equipped with our likelihood model for ziy.s, we take a Bayesian approach similar to fine-mapping methods
in GWAS to compute the posterior distribution of our causal genes ¢
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Pr(Zewas, € | Bpe, 02) N (Ziwas | 0, Bpe + LpeDeXpe) Pr(c)
Pr(Zwas) Y eree N (Ziwas | 0, Bpe + BpeDer o) Pr(c’)

Here we assume a simple prior for our causal indicator vector where ¢; ~ Bernoulli(p). In practice we set
p = 1/m, which is equivalent with a prior expectation of one causal gene driving risk at a given region. This
assumption is likely violated when signal for ziya.s is low, and we recommend only including regions with at
least one transcriptome-wide significant Z-score. We compute the marginal posterior inclusion probability
(PIP) for the ith gene as

PI‘(C ‘ Ztwas 2pe703) =

PIP(Cz = 1|tha57 Epc) = Z Pr(C’|thaS, Epc)a

c’eC:ci=1

where C is the set of all binary strings of length m. PIPs offer a flexible mechanism to create gene sets for
functional followup. While various approaches exist to define followup sets, we use a simple approach that
takes the top &’ genes until 90% of the posterior density is explained.

Simulations

We simulated TWAS association statistics using real eQTL weights packaged with the FUSION software (see
URLs) and estimated X, by predicting expression into the 489 European samples from the 1000 Genomes
project.3? To simulate TWAS association statistics at a region we sampled Ziyas ~ N (EpeA, Xpe) where
A ~ N(0,D,) for a causal configuration ¢; ~ Bernoulli(p = 1/m) given 02 = 40 and m being the number
of tissue-specific gene models in the region. For our initial simulations where gene expression influences
downstream trait, we restricted gene models to a single tissue by randomly sampling one tissue. This
ensures that the 3, reflects the correlation across different genes, rather than same gene but across tissues.
To simulate regions with masked causal genes (i.e. gene with non-zero A in the causal tissue), we sampled
Ziwas from the above model, but did not report the causal gene in the output. To simulate a null region that
harbors eQTL signal but does not contribute to downstream trait, we set ¢; = 0 for all i € {1,...,m}, which
results in the model Zyyas ~ N(0, Ype). To test how well the causal gene is tagged in non-causal tissues,
we kept all tissue-specific gene models to estimate 3. at a region, sampled zy,s association statistics, and
then masked the tissue-specific gene model with non-zero A.

Datasets

We downloaded publically available summary statistics for lipids measurements GWAS.'” We filtered sites
that were not bi-allelic, were ambiguous (i.e. alelle 1 is reverse complement with allele 2), or had MAF
less than 0.01. To perform TWAS on each of the lipids traits we used the software FUSION (see URLs).
FUSION takes a summary-based approach to TWAS and requires as input GWAS summary statistics (i.e.
SNP Z-scores) and eQTL weights. We downloaded publically available expression weight data as part of the
FUSION package. Reference LD was estimated in 1000 Genomes®? using 489 European individuals. Quality
control, cis-heritability of expression, and model fitting have been described elsewhere.!*4 25 We prioritized
adipose for our TWAS approach and used other reference panels as to act as proxy for adipose. That is, for all
possible tissue-specific gene models in a region we first test predicted expression using adipose gene models.
Then for the remaining genes found only in proxy tissue models, we select those with the best prediction
accuracy (i.e. out-of-sample R?). This resulted in 15,276 unique genes. Risk regions for FOCUS are ~ 1Mb
regions that contain at least one transcriptome-wide significant gene-trait association (Piyas < 0.05/15,276).

URLS

FOCUS: http://github.com/bogdanlab/focus/
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FUSION: http://gusevlab.org/projects/fusion/
Lipids GWAS: http://lipidgenetics.org/
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