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Abstract

Mendelian randomization (MR) is a burgeoning field that involves the use of genetic variants to 

assess causal relationships between exposures and outcomes. MR studies can be straightforward; 

for example, genetic variants within or near the encoding locus that is associated with protein 

concentrations can help to assess their causal role in disease. However, a more complex 

relationship between the genetic variants and an exposure can make findings from MR more 

difficult to interpret. In this Review, we describe some of these challenges in interpreting MR 

analyses, including those from studies using genetic variants to assess causality of multiple traits 

(such as branched-chain amino acids and risk of diabetes mellitus); studies describing pleiotropic 

variants (for example, C-reactive protein and its contribution to coronary heart disease); and those 

investigating variants that disrupt normal function of an exposure (for example, HDL cholesterol 

or IL-6 and coronary heart disease). Furthermore, MR studies on variants that encode enzymes 

responsible for the metabolism of an exposure (such as alcohol) are discussed, in addition to those 

assessing the effects of variants on time-dependent exposures (extracellular superoxide dismutase), 

cumulative exposures (LDL cholesterol), and overlapping exposures (triglycerides and non-HDL 

cholesterol). We elaborate on the molecular features of each relationship, and provide explanations 

for the likely causal associations. In doing so, we hope to contribute towards more reliable 

evaluations of MR findings.
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Introduction

The raison d’être for medical and scientific research is to understand disease aetiologies and 

identify opportunities for prevention and treatment. Observational epidemiological studies 

provide a wealth of information on associations between disease exposures and outcomes, 

but they cannot be interpreted as indicating causality, owing to limitations introduced by 

confounding and reverse causality1,2. Although randomized, controlled trials (RCTs) 

remain the gold-standard study design for inferring causality, they are exceedingly expensive 

and time-consuming efforts with high failure rates (>50% fail owing to lack of efficacy)3,4. 

In addition, RCTs might involve interventions that are pleiotropic (such as drugs that modify 

multiple biomarkers), which can challenge causal deductions for any individual biomarker. 

Finally, RCTs are not always feasible or ethical to conduct5, such as when attempting to 

clarify the causal role of alcohol in cardiovascular disease6–9.

Mendelian randomization (MR) is an established epidemiological approach that can provide 

information on causality and prioritize biomarkers for drug-target validation10–14. 

Grouping individuals in the population according to the possession of genetic variants that 

modify an exposure allows researchers to infer whether a biomarker is causally related to a 

disease (Figure 1). This inference is permissible owing to the fundamental nature of the 

genome: genetic variants should be free from conventional confounding owing to the 

random independent assortment of DNA at meiotic segregation of alleles. In addition, 

reverse causality bias would not occur owing to the essentially non-modifiable nature of the 

transmitted germline genome. Therefore, MR can help to strengthen causal inferences on the 

role of modifiable exposures, such as circulating biomarkers in disease risk. Genetic variants 

that are associated with LDL-cholesterol levels have been used to assess the causal role of 

LDL cholesterol in coronary heart disease (CHD)15–18. Irrespective of the genetic variants 

used as a proxy for LDL cholesterol, strong dose–response relationships have been 

identified15. This observation suggests that lowering LDL-cholesterol levels by any means 

would lead to a reduction in CHD, and further validates the linear dose–response 

relationship between LDL cholesterol and CHD risk identified from meta-analyses of RCTs 

assessing statins and other cholesterol-lowering interventions19–21.

The use of MR analysis had led to several major findings and validations of cause–effect 

relationships in cardiometabolic disorders. In the absence of any RCTs that have assessed 

the efficacy of a specific C-reactive protein (CRP)-lowering therapeutic for CHD, MR 

studies have successfully shown that CRP is unlikely to have a major role in the 

development of CHD22,23. Similarly, whereas an RCT on the effect of alcohol consumption 

on cardiovascular health is unfeasible and unethical, MR analyses have shown that moderate 

alcohol consumption is unlikely to reduce CHD risk24. Increased adiposity was found to 

increase the risk of CHD in several MR studies25–28, whereas the only RCT investigating 

this relationship was underpowered for assessing causality29. Furthermore, MR analyses 

validated findings from RCTs assessing drug targets, including 3-hydroxy- 3-

methylglutaryl-coenzyme A reductase (HMG-CoA reductase)30,31, secretory phospholipase 

A2-IIA32,33, lipoprotein-associated phospholipase A234–38, and Niemann-Pick C1-like 

protein39. Finally, MR studies have also identified a potential increased risk of diabetes 

mellitus with pharmacological inhibition of PCSK940–42. These studies and other notable 
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examples of MR analyses that have progressed our understanding of the aetiology of 

cardiovascular and metabolic diseases are outlined in Table 1.

As with conventional observational, epidemiological, and interventional trials, MR analyses 

typically yield a quantitative association between a biomarker and disease risk. This 

approach is most robust when a variant is in or near a gene that is responsible for the 

synthesis of the protein under investigation, and associates with concentrations of the same 

protein without disrupting protein function (for example, using genetic variants around the 

CRP gene that are associated with concentrations of circulating CRP)22. However, there are 

various scenarios in which the accuracy of data derived from MR analyses becomes 

compromised. In this Review, we highlight scenarios in which the interpretation of MR 

analyses is not straightforward and, in each case, we elaborate on the molecular details and 

provide what we consider to be a more accurate interpretation (Figure 2).

Multiple biomarkers on separate pathways

In general, a genetic variant used for MR should affect only a single pathway on which the 

exposure of interest lies (Box 1). For example, the use of a genetic variant in MR that, 

through its association with the exposure of interest, associates with multiple biomarkers on 

a single biological pathway is valid and is termed vertical pleiotropy. By contrast, horizontal 

pleiotropy — when a genetic variant employed in MR associates with multiple biomarkers 

on discrete pathways (Box 1; Figure 2A) — can yield invalid causal estimates. Two related 

examples are discussed below: the first example involves the same genetic variant used 

incorrectly to assess causal relationships of multiple traits on discrete pathways, and the 

second example relates to the use of pleiotropic single nucleotide polymorphisms (SNPs) to 

assess the causal role of CRP in CHD without applying appropriate analytical checks.

Branched-chain amino acids and diabetes—Observational studies have reported an 

association between the branched-chain amino acids (leucine, isoleucine, and valine) and 

risk of incident diabetes43–48. In a genome-wide association study (GWAS) published in 

2016, a genetic variant associated with these three amino acids was identified and used to 

conduct MR analyses49. At the PPM1K locus, the rs1440581 SNP was used to generate 

causal estimates for both leucine and valine, whereas a SNP in the same locus (rs7678928, 

in linkage disequilibrium with rs1440581 at r2 = 0.79 and Dʹ = 1) was used in combination 

with other SNPs for isoleucine. According to the investigators, “the association of genetic 

variants appeared highly specific”, and they subsequently generated MR estimates for each 

of the three amino acids, and used these to implicate the role of branched-chain amino acid 

metabolism in the development of diabetes49.

As shown in Figure 3A, the PPM1K locus encodes mitochondrial phosphatase that activates 

branched-chain α-ketoacid dehydrogenase (BCKD), which is responsible for the 

metabolism of leucine, isoleucine, and valine49. Therefore, by activating the enzyme 

responsible for the metabolism of these three amino acids, SNPs in the PPM1K locus 

associate with the concentrations of these amino acids. In MR analyses, the association of 

the SNPs with risk of disease is scaled to the association of the SNP with the exposure to 

generate a single causal estimate for the relationship between the exposure and disease 
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(Figure 1). When the same SNP is used to make causal deductions on multiple exposures, 

there is only a single association of the SNP with risk of disease; therefore, this SNP-to-

disease association is used multiple times, each time assuming that the exposure individually 

accounts for the disease association. In this scenario, the association of PPM1K at 

rs1440581 (or a SNP in linkage disequilibrium with rs7678928) with diabetes is used to 

generate individual MR estimates for each of the three branched-chain amino acids, 

ascribing a causal estimate that is scaled to the effect of the SNP on the amino acid49 (Table 

2). Crucially, this analysis makes the invalid assumption that each of the three amino acids in 

isolation would be causal, and is in violation of one of the principal rules of MR: that the 

instrument acts only on the outcome through the exposure of interest. Furthermore, the 

genetic variant association with diabetes is triple-counted, in that the full effect is attributed 

to three different exposures, which is incoherent. Using this single locus, the MR analyses 

cannot clarify which, if any, of the three amino acids is actually driving the causal 

relationship with diabetes. Given that the researchers concluded that their findings are 

“consistent with a causal role of [branched-chain amino acid] metabolism in the aetiology of 

type 2 diabetes”, readers might incorrectly interpret the quantitative MR estimates reported 

for each of the three branched-chain amino acids as evidence that each branched-chain 

amino acid is individually and independently related to type 2 diabetes49. The only 

information that can be inferred from this study is that the PPM1K locus activates an 

enzyme (BCKD) that has a range of substrates (which might not be limited to the three 

amino acids studied), and that one or more of these pathways leads to diabetes. Therefore, 

although we agree with the researchers regarding their results being consistent with the 

proposed causal role of branched-chain amino acid metabolism in diabetes, the presentation 

of the data could lead to misinterpretation49.

APOE, C-reactive protein, and risk of CHD—In MR studies, incorrect analysis of a 

genetic variant in APOE that associates with circulating levels of CRP might erroneously 

imply a causal relationship between CRP levels and CHD risk50. However, this relationship 

is actually driven by the association of the APOE genotype with multiple biomarkers on 

discrete pathways, including LDL cholesterol, which is causally related to CHD (Figure 3B). 

Use of such pleiotropic variants in isolation is, therefore, likely to lead to incorrect causal 

interpretations. An alternative approach would be to combine multiple SNPs across the 

genome into a genetic variant score for CRP51. Although pleiotropy in a gene score might 

‘balance out’ in certain settings (so-called ‘balanced horizontal pleiotropy’; Box 1), the 

horizontal pleiotropy of the CRP gene score is likely to persist, resulting in potential biased 

estimates using conventional MR approaches (Boxes 2, 3). Furthermore, when using a 

multilocus genetic variant score for CRP and removing SNPs on the basis of tests for 

heterogeneity, this approach can still yield biased results, because multiple SNPs that have 

pleiotropic effects might remain. Therefore, causal associations for disease that arise from 

horizontal pleiotropy when analysed using conventional MR methods might be biased 

(known as unbalanced horizontal pleiotropy)52. This approach could be improved by using 

SNPs that are either confined to the CRP locus (which are more likely to show specificity for 

the protein trait), or using SNPs across the genome identified from GWAS in combination 

with use of more novel approaches, such as MR-Egger (Box 4), which allows relaxation of 

the instrumental variable assumption that there is no unbalanced horizontal pleiotropy53,54. 

Holmes et al. Page 4

Nat Rev Cardiol. Author manuscript; available in PMC 2018 April 01.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



Therefore, our recommendation would be to utilize a range of applicable methodologies as 

sensitivity analyses to test the robustness of the MR estimates against potential violations, 

including unbalanced horizontal pleiotropy.

Disrupting the function of the exposure

A paradoxical association between the levels of the biomarker and disease risk in MR 

(Figure 2B) can take place if a SNP disrupts the normal function of a causal exposure (such 

as binding of the exposure to its target receptor). In this setting, the difference in biomarker 

concentrations from the genetic variant might be used to infer inaccurate directionality of 

causation. However, by perturbing the normal function of the biomarker, the genetic variant 

can paradoxically be linked with a biomarker that confers an opposite risk of disease in MR 

analysis to that observed in epidemiological studies.

SCARB1, HDL cholesterol, and CHD risk—In 2016, a rare variant in SCARB1 was 

identified that results in the loss of function of the scavenger receptor B1 (SR-B1)55. 

Individuals carrying this variant have higher levels of circulating HDL-cholesterol levels and 

an elevated risk of CHD. The study investigators proposed that reduced hepatic SR-B1 

function in humans causes impaired reverse cholesterol transport, which in turn leads to 

increased risk of CHD despite elevated HDL-cholesterol levels55. These findings have been 

widely interpreted to mean that high levels of HDL cholesterol can actually contribute to the 

development of CHD, which is inconsistent with the well-established putative protective role 

of HDL cholesterol against cardiovascular risk56,57.

The HDL-mediated transport of cholesterol from peripheral tissues to the liver (reverse 

cholesterol transport) is thought to result in a decrease in atheroma burden, and a 

commensurate reduction in the risk of CHD58,59. However, a critical component of HDL-

mediated reverse cholesterol transport is the selective uptake of circulating HDL particles by 

the liver. After hepatic uptake, cholesterol is excreted in bile; the binding and uptake of HDL 

particles into the liver occurs principally through SR-B160. Therefore, the increased risk of 

CHD associated with a genetic variant that disrupts normal function of SR-B1 potentially 

provides new evidence that HDL-mediated reverse cholesterol transport (through SR-B1) 

might have a role in preventing the development of CHD (Figure 4A). However, to temper 

enthusiasm, whole-genome sequencing studies that investigated sequence variants within the 

SCARB1 locus have identified additional links with other biomarkers, including lipoprotein-

associated phospholipase A2 and vitamin E, suggesting the potential for horizontal 

pleiotropy (Box 1). Furthermore, both RCTs61–63 and MR studies16–18 have failed to 

show that increasing HDL-cholesterol levels can reduce cardiovascular disease risk. 

Therefore, whether HDL metabolism has a causal role in the aetiology of CHD remains 

speculative, and studies are now evaluating the function of HDL particles, as opposed to 

measuring only circulating HDL-cholesterol concentrations64–67.

IL-6 signalling and risk of CHD—IL-6 is a proinflammatory cytokine produced by 

stromal and immune cells that circulates in the blood and binds to plasma membrane 

receptor complexes. IL-6 can exert its biological effect via two signalling mechanisms: 

classical signalling and trans-signalling. Classical signalling involves the binding of IL-6 to 
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cellular membranes that express both the IL-6 receptor (IL6R) and glycoprotein-130 68. 

Most cells express glycoprotein-130, but only a limited number express IL6R. In trans-

signalling, a soluble form of the IL6R binds to circulating IL-6 in the blood, and this IL-6/

IL6R complex can then bind to any cell expressing glycoprotein-130. Since 

glycoprotein-130 is ubiquitous, trans-signalling can involve many more cell types than 

classical signalling. Classical IL-6 signalling is thought to have a more prominent role in the 

development of systemic diseases, whereas trans-IL-6 signalling might be more involved in 

local tissue inflammation69.

Using a nonsynonymous SNP (rs8192284) in the gene encoding IL6R, two studies have 

reported that variants associated with increased concentrations of circulating IL-6 are related 

to a reduction in CHD risk70,71. A naive interpretation, and one that the researchers explain 

is not the case, would be that IL-6 signalling is protective against CHD. However, this 

deduction would be at odds with the well-established role of IL-6 as an inflammatory 

cytokine72.

A genetic variant in IL6R (rs8192284) has also been shown to increase generation of soluble 

IL6R through increased proteolytic cleavage of membrane-bound IL6R, leading to a 

subsequent reduction in membrane-bound IL6R73,74. This reduction in turn leads to 

diminished IL-6-mediated classical signalling, and a shift from classical signalling to trans-

signalling, effectively attenuating downstream classical signalling of IL-6. Consequently, 

decreased classical IL-6 signalling increases circulating IL-6 (owing to a reduction in 

membrane-bound IL6R and an increase in the circulating IL-6/IL6R complex), but a 

reduction in CRP levels (as classical IL-6 signalling is impaired; Figure 4B)75,76. Of note, 

the association of SNPs in IL6R with CRP concentrations in this setting reflects vertical 

pleiotropy. Although in no way does this observation indicate that CRP is causal for CHD, 

the association of SNPs in IL6R with CRP does not invalidate the use of IL6R in MR 

because, unlike in Figures 3A, B, CRP is downstream of the same pathway as IL-6. One way 

to dissect these relationships would be to use separate genetic instruments for IL-6 and CRP, 

and construct a causal framework involving molecular intermediates using mediation 

analysis77.

Multiple biomarkers on the same pathway

If a variant is associated with multiple dependent traits on the same pathway, and if those 

biomarkers have different roles in disease, paradoxical situations can arise (Figure 2C).

ALDH2 and alcohol consumption—Alcohol is metabolized in tissues and in the liver 

by the enzymes alcohol dehydrogenase 1B (ADH1B) and acetaldehyde dehydrogenase 2 

(ALDH2). Metabolism of alcohol by ADH1B yields acetaldehyde, a group 1 human 

carcinogen78, which is rapidly metabolized by ALDH2 into acetate. When ADH1B and 

ALDH2 function normally, systemic and tissue concentrations of acetaldehyde are low. 

However, when ADH1B enzymatic function is increased, or when ALDH2 enzymatic 

function is impaired, acetaldehyde concentrations rise, resulting in symptoms such as 

flushing, nausea, and headache upon consumption of alcohol. A naturally occurring genetic 

variation in ALDH2 (rs671, in which carriage of the variant that influences enzyme activity 
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is referred to as *2) that is present in East-Asian individuals, but not in white individuals 

(ALDH2*1*1) results in loss-of-function of ALDH2 in a dose-dependent fashion. 

Individuals who are homozygous for the normal variant can consume alcohol in the usual 

way, whereas those who are heterozygous can still consume alcohol, although they 

experience symptoms of acetaldehyde toxicity. However, individuals who are homozygous 

for the ALDH2*2 variant tend to consume almost no alcohol79, given the symptoms 

experienced by this population. Individuals who carry one copy of the ALDH2*2 variant 

experience a less severe flushing response as compared with individuals who carry two 

copies of the *2 variant80, and this is evidenced by differences in blood acetaldehyde levels 

for a given dose of alcohol81.

ALDH2 and hypertension—Given that alcohol consumption is associated with 

hypertension82, the ALDH2*2 variant can be used as a genetic instrument to assess the 

causal role of alcohol consumption on blood pressure levels83. As each additional 

ALDH2*2 allele reduces alcohol consumption in a dose-dependent manner (Figure 5), a 

conventional MR study using a per-allele genetic model for the *2 allele of ALDH2 will 

produce a valid causal estimate83. Among East-Asian individuals, women generally 

consume considerably lower amounts of alcohol compared with men; therefore, stratifying 

the MR analysis by sex can test one of the fundamental principles of MR: that the genetic 

instrument is acting through the exposure of interest84,85. Given that the genetic variant 

should associate with blood pressure only in the presence of alcohol, a larger association of 

the genetic variant with blood pressure should be seen in men versus women (because men 

consume more alcohol); this pattern has been reported in several studies83,86. The 

interaction between sex and ALDH2 genotype can be used as the instrumental variable to 

estimate the causal effect of alcohol on outcomes, and is a robust analytical strategy that 

circumvents the instrumental variables assumption of no pleiotropy79.

ALDH2 and oesophageal carcinoma—When investigating the association between 

ALDH2 and oesophageal carcinoma, a different interpretive framework is required. 

Individuals who drink the most (that is, those who are homozygous for the wild-type gene) 

might be expected to have the highest risk of oesophageal carcinoma; however, individuals 

who carry one copy of the *2 allele actually have the highest risk87. Although it might be 

tempting to interpret this observation as meaning that moderate drinkers having the highest 

risk of oesophageal carcinoma (a paradoxical scenario that is at odds with dose-dependent 

increase in risk with alcohol intake), this relationship can be explained by the effect of 

ALDH2 on both alcohol consumption and circulating concentrations of acetaldehyde81 

(Figure 5).

Individuals who are heterozygous for ADLH2 rs671 (that is, carriers of the *1*2 allele) have 

the highest circulating concentrations of acetaldehyde (Figure 5B), despite the fact that they 

do not consume the greatest amount of alcohol (ALDH2 *1 homozygotes consume the 

greatest amounts; Figure 5A), nor do they have the genetic variant (like that carried by 

ALDH2 *2 homozygotes81) that conveys highest concentrations of acetaldehyde for a given 

amount of alcohol (Figure 5C). The highest absolute concentration of circulating and tissue 

acetaldehyde by genotype results in an increased risk of oesophageal carcinoma in *1*2 
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allele group compared with either the *1*1 allele or *2*2 allele groups. In this setting, the 

genetic variant influences both alcohol consumption and, among alcohol drinkers, 

acetaldehyde levels. For these reasons, a per-allele analytical model would be inappropriate 

for evaluation of causality88.

To summarize, the way in which a genetic variant might serve as an exposure measure for 

different traits depends on the outcome under investigation. For blood pressure, which seems 

not to be influenced in the long term by acetaldehyde levels, the variant is an instrument for 

causal inferences with respect to alcohol intake. For oesophageal cancer, the variant is an 

additional instrument for assessing the causal effects of acetaldehyde among consumers of 

alcohol. Without a good understanding of the biological basis of the effects of the genetic 

variant, misleading interpretations could be drawn from MR analyses.

Time-dependent exposures

If an exposure is time-dependent (for example, if an exposure is influential only during a 

period of development, such as during adolescence), then despite MR results suggesting a 

causal effect, modification of the exposure in later life will not necessarily alter the risk of 

disease (Figure 2D).

Vitamin D and multiple sclerosis—A MR study published in 2015 suggested a causal 

role of vitamin D in the aetiology of multiple sclerosis89. Although this example does not 

pertain directly to cardiovascular disease, we use it to introduce a general issue in MR 

analysis that might also apply for studies in cardiovascular disease. Previous observational 

studies of migration and risk of multiple sclerosis have consistently identified a time-

dependent relationship between these two variables, indicating that sunlight exposure (and 

perhaps vitamin D levels) during early life, but not during adulthood, is associated with the 

risk of multiple sclerosis90–93. In this scenario, a MR study utilizing genetic variants 

associated with circulating levels of vitamin D would yield evidence in support of a 

protective role of vitamin D in the aetiology of multiple sclerosis (Figure 6A). However, 

modifying vitamin D levels after the critical time period (infanthood up to early adulthood) 

would not reduce the risk of multiple sclerosis. If this time period were proven to be critical 

for disease development, RCTs would need to be commenced in at-risk individuals (perhaps 

identified through family history or genetic risk scores) during childhood, as interventions 

commenced after this critical period would not be expected to influence disease risk.

Extracellular superoxide dismutase and CHD—Antioxidants have long been 

hypothesized to prevent CHD94; however, evidence from major RCTs conducted in adults 

have yielded largely neutral findings95,96. Extracellular superoxide dismutase (ecSOD) 

protects the nitric oxide released from smooth muscle cells from degradation by 

superoxide97,98. In preserving the function of nitric oxide, ecSOD facilitates the 

vasodilatation of arterioles, allowing maintenance of normotension99. Therefore, ecSOD is 

considered an endogenous antioxidant that has an important role in the development of 

vascular disease. A large population-based cohort study assessing a genetic variant that 

encodes a missense mutation (R231G in the ECSOD gene) reported that, contrary to 

expectations, the variant was associated with elevated levels of circulating ecSOD and linked 
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to an increase in CHD risk100. The genetic variant altered the heparin- binding domain of 

ecSOD, affecting the binding capacity of ecSOD to the external membrane of endothelial 

cells (Figure 6B). As a result, ecSOD plasma levels increase, but the ecSOD cannot protect 

nitric oxide from degradation by superoxide anions98. Reduced bioavailability of nitric 

oxide can lead to hypertension and increased risk of CHD. This scenario is, therefore, 

another example of a seemingly paradoxical association between the concentration of the 

biomarker (ecSOD) in relation to its purported role in disease development, and supports the 

protective role of antioxidants in CHD.

Interestingly, other studies have shown that this same genetic variant associated with higher 

CHD risk is also associated with lower risk of lung disease101–103, albeit with some mixed 

findings104. However, this observation can be explained by findings from animal studies; 

the R231G SNP in the ECSOD gene has been shown to reduce ecSOD concentration in 

blood vessels, while concomitantly increasing ecSOD levels in alveolar fluids. Therefore, 

this variant might be associated with detrimental effects on the vasculature, but beneficial 

effects for lung function105. Notably, antioxidants might be important only at critical times 

during the development of vascular disease (unlike LDL cholesterol, which we discuss 

below). This critical time effect is consistent with other MR studies that have provided some, 

admittedly weak, evidence for a causal role for vitamin C deficiency in CHD 

development106, and might explain the possible discrepancy between these findings and the 

null findings from RCTs assessing vitamin C supplementation and risk of vascular disease in 

later life107.

Cumulative exposures

If an exposure accumulates to cause disease over many years, MR analyses might generate a 

causal estimate that is larger than that from a RCT (which alters exposure for only a limited 

time period) or from observational epidemiology (which generally captures the effect of the 

exposure for only a particular time period). In general, MR findings should be interpreted to 

reflect a lifelong exposure to a biomarker (Figure 2E), although this inference changes if an 

exposure occurs only after a certain age (for example, with alcohol or smoking, in which 

case the genetic instrument influences exposure only after the habit has been taken up)11. 

Furthermore, MR studies should demonstrate that the SNP associates with the biomarker 

across the lifetime, to allow appropriate interpretations to be made.

LDL cholesterol and CHD risk—An MR study using multiple independent genetic loci 

that influence concentrations of LDL cholesterol reported that a decrease in LDL-cholesterol 

level of 1 mmol/l results in >50% reduction in the risk of CHD39. This projection is 

approximately double the estimated effect reported in RCTs for a similar reduction in LDL-

cholesterol level (25% reduction in the risk of a major coronary event for each 1 mmol/l 

reduction with statins)108. As such, this magnitude of effect from the MR study could be 

considered an overestimation109. However, the causal estimate from MR depicts lifelong 

exposure to a harmful trait (Figure 6C). Given that atherosclerosis is a disease that 

accumulates over a lifetime110,111 and the clinical effects of CHD generally present at 

advanced ages112, genetic variants provide an insight into the expected effect sizes if 

interventions were initiated from early childhood to reduce circulating LDL-cholesterol 
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levels. Therefore, effect sizes from MR analyses should not be considered equivalent to 

those from an RCT of a short-term intervention. Differences in estimates from MR and 

RCTs can inform about disease latency and critical exposure periods.

Overlapping exposures

An emerging approach in MR analyses is the combination of multiple traits and genetic 

instruments into one model to try to tease out independent causal effects (so-called 

‘multivariable MR’113. However, multivariable MR for discrete traits (for example, BMI 

and blood pressure in relation to cardiovascular disease) has several limitations, such as 

collider bias, in which the conditioning of a mediator between the exposure and outcome can 

induce new confounding by factors that are not related to the MR instrument before such 

conditioning114,115. This situation becomes more complex if the traits themselves overlap 

(that is, they contain the same element in their total value; Figure 2F).

Non-HDL cholesterol and triglycerides—In a study by Helgadottir and colleagues, 

gene scores for non-HDL cholesterol and triglycerides were used to determine whether 

triglycerides have an independent causal role in CHD116. The researchers suggested that 

although LDL cholesterol (calculated using the Friedewald equation117) does not include 

cholesterol from triglyceride-rich lipoproteins (TRLs), non-HDL cholesterol does include 

this class of lipoproteins. However, estimation of LDL cholesterol via the Friedewald 

equation also includes intermediate-density lipoproteins118, and given that intermediate-

density lipoprotein particles are semi-enriched in triglycerides, LDL cholesterol estimated 

via the Friedewald equation should also contain TRL-related cholesterol. A MR analysis that 

included both non-HDL cholesterol and triglycerides showed that although the association 

of non-HDL cholesterol with risk of CHD remained largely unaltered, the association of 

triglycerides with CHD after adjusting for non-HDL cholesterol diminished towards the 

null116.

In this scenario, non-HDL cholesterol and triglycerides should not be considered as discrete 

entities, but as overlapping entities (Figure 7). Therefore, adjustment of the triglyceride 

genetic instrument for non-HDL cholesterol adjusts for overlapping components, and the 

diminution of the triglyceride score should not be interpreted as meaning that triglycerides 

have no causal effect (that is, in effect, the multivariable analysis has adjusted triglycerides 

for a component of triglycerides contained within non-HDL cholesterol). By contrast, 

although non-HDL cholesterol consists of cholesterol in TRLs, it also contains LDL 

cholesterol, which has a triglyceride-independent effect on CHD18. Therefore, a lack of 

diminution of the association of the non-HDL cholesterol gene score with risk of CHD after 

adjustment for triglycerides provides no additional information beyond what is already 

understood about the causal role of LDL cholesterol in CHD, and is not useful for assessing 

the causality of triglycerides in CHD. By contrast, MR for correlated, but non-overlapping 

traits can be highly informative. For example, separate genetic instruments (albeit not using 

a multivariable MR framework) for CRP and IL-6 show that whereas IL-6 upregulates 

CRP119, causality for CHD is limited to IL-6 22,23,50,70,71.
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Solutions for rigorous interpretations of MR

Although each example highlighted above is unique, they can be categorized into general 

themes, each of which has potential solutions to aid interpretation. First, when a single 

genetic variant associates with multiple traits on discrete pathways (horizontal pleiotropy), 

the use of this individual genetic variant to generate causal estimates for each individual trait 

is invalid, because it makes assumptions that each trait alone accounts for the causal effect. 

Furthermore, ascribing causal effects when using a single genetic variant to instrument a 

complex phenotype (such as FTO for BMI120) should be undertaken cautiously owing to 

the high likelihood of horizontal pleiotropy. This notion is especially true for non-protein 

(complex) traits, because no single genetic variant will tag a direct pathway to the exposure 

under investigation.

When an MR analysis generates associations that directly contradict what has been 

established from observational, epidemiological studies, investigators should consider 

whether the genetic variants used in the instrument disrupts the normal function of an 

exposure. If so, the association might arise owing to the biomarker not exerting its normal 

biological effect, and levels of this biomarker might be elevated despite this lower functional 

effect. An alternative explanation in this setting might be negative bias owing to unbalanced 

horizontal pleiotropy. By contrast, if the magnitude of effect from MR is directionally 

consistent but larger in magnitude than that seen in observational studies, an alternative 

explanation might be cumulative exposure, given that the genetic variant proxies a lifetime 

exposure. Alternative explanations include measurement error in the observational analysis 

(leading to regression dilution bias, from which MR analysis is protected) or a positive bias 

induced by horizontal pleiotropy.

In these examples, pleiotropy can seriously perturb estimates derived from MR analyses. 

Uncovering the presence of horizontal pleiotropy when using a single genetic variant is 

challenging. Detailed knowledge about the function of the variable, or access to large 

cohorts in which a phenome-wide association scan can reveal associations that might be 

indicative of unknown pleiotropy can guide interpretation. By contrast, when multiple SNPs 

are used in combination as genetic instruments, approaches now exist (such as MR-Egger; 

Box 4) to quantify and assess the presence of pleiotropy, and can provide valid causal 

estimates even in the presence of pleiotropy (although additional assumptions are 

required)53,54,79,113,121–123. These tests for pleiotropy should be used as sensitivity 

analyses in addition to conventional MR approaches.

When an MR study provides evidence of causality that has not been recapitulated in RCTs, 

one explanation is that the biomarker might be causal only during a particular time period of 

life. Therefore, the evidence obtained from MR studies might not translate into equivalent 

benefit if the intervention to modify the biomarker is at a different period of the life course 

from when it has its causal effect.

Finally, when assessing multiple traits in combination, if the traits are overlapping (that is, 

they contain elements of each other in their individual measures), then MR might not allow 

reliable individual assessment of which trait is causal. In this scenario, MR analyses are 

fraught with the same issues as conventional observational, epidemiological studies whereby 
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adjusting for an overlapping trait diminishes associations of traits in the model with risk of 

disease.

Conclusions

In this Review, we have sought to illustrate and provide explanations for potentially 

paradoxical and implausible findings from MR analyses. As MR studies are increasingly 

performed to clarify causal relationships of the expanding number of traits that are 

measurable (such as ‘-omics’ analyses, including metabolomics44,124, lipidomics125, and 

proteomics126), these scenarios are likely to become more commonplace, highlighting the 

need for careful application and critical appraisal of MR findings. Indeed, as the relative 

ease of performing two-sample MR studies utilizing readily available data increases, the 

reliability of such studies are likely to decrease, through both methodological errors and 

through publication bias influencing which results are deemed ‘of interest’127. Despite 

these caveats, with increasing large-scale genetic data becoming available to facilitate two-

sample MR128, together with resources such as MR-Base129, LD Hub130, and 

PhenoScanner131, MR promises to provide an efficient and pragmatic means to identify 

traits that are likely to be causal in cardiometabolic and other diseases, and to help to 

prioritize drug targets to take forward into therapeutic clinical trials132. Such drug-target 

prioritization might result in fewer failed multibillion dollar clinical trials and can contribute 

to improving the drug-development pipeline.
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Glossary

Randomized, controlled trials (RCTs)
An interventional study in which individuals are randomized to an ‘exposed’ arm (for 

example, an active drug) or to a comparator control arm (for example, placebo) to test the 

efficacy of an intervention on an outcome (such as disease risk). Such trials are considered 

the gold standard for asserting causal relationships of an exposure to disease risk.

Mendelian randomization
A genetic epidemiological approach that aims to quantify the causal relationship between an 

exposure and an outcome, by using the properties of the genome (randomized owing to 

Mendel’s second law, and invariant) to minimize the issues of confounding and reverse 

causality that can undermine traditional observational epidemiology.

Vertical pleiotropy
The association of a genetic marker (for example, a single nucleotide polymorphism [SNP] 

in isolation, or a genetic instrument consisting of multiple SNPs) with more than one 

phenotype on the same biological pathway.

Horizontal pleiotropy
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The association of a genetic marker with more than one phenotype on discrete biological 

pathways.

Genome-wide association study (GWAS)
The hypothesis-free investigation of hundreds of thousands to millions of genetic variants 

(typically single nucleotide polymorphisms) for their association with a phenotype to 

characterize the underlying genetic architecture of the phenotype.

Linkage disequilibrium
The nonrandom assortment of genetic variants, meaning that when linkage disequilibrium 

between a pair of variants is high (for example, as measured by a r2 value of >0.80), a single 

nucleotide polymorphism (SNP) can be used as a ‘proxy’ for another SNP in the absence of 

this second SNP being directly genotyped.

Unbalanced horizontal pleiotropy
When horizontal pleiotropy is such that alternative pathways from the genetic marker to 

disease can lead to distortion of the association of the exposure under investigation. 

Unbalanced horizontal pleiotrophy is a violation of the exclusion restriction assumption of 

an instrumental variable.

Instrumental variable
A variable used as a proxy for an exposure of interest that is not associated with confounders 

and only associates with an outcome through the exposure of interest

Friedewald equation
The estimation of LDL-cholesterol levels in the absence of its direct measurement, from 

total cholesterol, high-density lipoprotein cholesterol, and triglycerides

Two-sample Mendelian randomization
The single nucleotide polymorphism (SNP)-to-exposure estimate is obtained from a separate 

dataset to that of the SNP-to-outcome estimate.
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Key points

• Mendelian randomization (MR) is a powerful tool that utilizes genetic 

information to inform about the likely causal relevance of an exposure to an 

outcome

• When performed rigorously, MR findings should be free from reverse 

causality bias, and only minimally affected by confounding

• The number of MR studies has been increasing in the past decade, providing 

important new insights into disease aetiology

• However, as MR studies become more common, and as increasingly complex 

gene-to-exposure and exposure-to-outcome relationships are investigated, 

reliable conduct and interpretation of MR analyses can be challenging

• Potential solutions to aid the conduct and interpretation of MR studies can be 

derived, for example, through use of emerging statistical approaches to 

investigate potential genetic pleiotropy that can distort the findings
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Box 1

Pleiotropy in MR and implications for causal deduction

Single nucleotide polymorphisms (SNPs) can be used in isolation or combination as 

genetic instruments to assess the causal role of a biomarker with disease risk. Vertical 

pleiotropy refers to when genetic variants associate with multiple biomarkers that are on 

the same pathway from exposure through to disease, and does not invalidate the findings 

as long as the primary phenotype (most proximal to the genotype) that is influenced by 

the genetic variant is understood. Horizontal pleiotropy refers to when a genetic variant 

associates with traits on discrete pathways that are also causal in disease. When using 

multiple genetic variants in combination, horizontal pleiotropy can ‘balance out’ and 

have no net effect on the association of the exposure and disease risk. Balanced 

horizontal pleiotropy should not bias the causal effect derived from Mendelian 

randomization (MR), even when using conventional approaches; however, it does lead to 

increased variance in the effect estimation, and thus less-precise confidence intervals. By 

contrast, unbalanced horizontal pleiotropy distorts the association between the exposure 

and the outcome, and the effect estimate from conventional MR approaches can be 

exaggerated or diminished, depending on the direction of the pleiotropy. The presence of 

unbalanced horizontal pleiotropy can be formally assessed by using MR-Egger53, 

provided certain assumptions are satisfied. MR-Egger provides a valid MR estimate that 

takes into account presence of unbalanced horizontal pleiotropy. Other approaches 

include median and weighted median MR54, which provide a valid MR estimate as long 

as the majority of SNPs (or the majority of the statistical weight contributed by the SNPs) 

in the instrument are valid, and the modal estimate122, which assumes that the most 

common effect estimate among a set of instruments is the one most likely to be valid. 

Each of these approaches has their own assumptions54. When possible, investigators 

should perform these sensitivity analyses when conducting conventional (inverse 

variance-weighted) MR analyses. Figure adapted from White, J. et al. Association of 

lipid fractions with risks for coronary artery disease and diabetes. JAMA Cardiol. 1, 692–

699 (2016), with permission from the American Heart Association.
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Box 2

Conventional MR approaches

When using multiple single nucleotide polymorphisms (SNPs) for Mendelian 

randomization (MR) in summary-level data, inverse variance-weighted analysis was, until 

recently, the most common analytical approach. In this form of regression, each SNP 

contributes a data point on the x-axis (SNP-to-exposure association) and y-axis (SNP-to-

disease association). However, inverse-variance-weighted MR forces the y-intercept 

through the origin. In the setting of balanced pleiotropy, bias should not be evident and 

the slope of the regression line can be reliably interpreted as the causal effect of the 

exposure on the outcome. However, in the presence of unbalanced horizontal pleiotropy, 

conventional MR analysis can lead to bias as the y-intercept, being forced through the 

origin, means that the directional bias influences the regression slope. To overcome this 

issue, investigators previously relied on approaches such as ‘manual pruning’ of SNPs 

that they considered pleiotropic. However, this approach relies on the availability and 

precision of SNP estimates with multiple biomarkers to inform on the presence of such 

pleiotropy; many SNP associations that do not meet conventional significance thresholds 

in genome-wide association studies (GWAS) are false-negatives, owing to the stringent α 
values used to avoid false-positives133,134. Second, this approach can be subjective as 

one investigator might consider a trait to be indicative of vertical pleiotropy and retain 

SNPs associated with the trait, whereas another could consider the same trait to be 

evidence of horizontal pleiotropy and remove SNPs showing association with the trait. 

This approach would lead to different genetic instruments and potentially inconsistent 

results between studies. Furthermore, reasons for exclusion can be nontransparent and 

differ by study, further reducing the degree of objectivity. Finally, manual pruning can 

lead to a genetic instrument that is no longer biologically meaningful (Box 3).
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Each diamond represents a single SNP plotted so that the SNP to exposure estimate is on 

the x-axis and the SNP to outcome estimate is on the y-axis. Filled diamonds = non-

pleiotropic variants and open diamonds = pleiotropic variants. In MR using summary 

level data, the regression slope provides an estimation of the causal effect of the exposure 

on the outcome.
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Box 3

Effects of manual pruning on interpretation of MR analysis

As mentioned in Box 2, manual pruning of single nucleotide polymorphisms (SNPs) that 

are considered pleiotropic might result in a genetic instrument that is no longer 

biologically meaningful, as SNPs that are retained might not be indicative of any tangible 

entity. For example, if we have SNPs in 70 loci associated with HDL cholesterol from 

genome-wide association studies (GWAS) using conventional P-value thresholds (that is, 

P <5 × 10-8)135, and manually prune out the SNPs associated with LDL cholesterol or 

triglycerides (associated with either LDL cholesterol or triglycerides at P <5 × 10-8, or by 

using a more relaxed P-value threshold) in order to obtain an instrument that is more 

‘specific’ for HDL cholesterol, this approach will retain a smaller number of SNPs in the 

genetic instrument. However, by removing SNPs that account for the underlying genetic 

architecture of HDL cholesterol acquired in a hypothesis-free GWAS study, the 

remaining SNPs might not be representative of features that are biologically meaningful 

of HDL cholesterol. Furthermore, manual pruning can exacerbate the problem when 

removal of SNPs occurs on the basis of vertical pleiotropy. For example, pruning SNPs 

associated with fasting glucose for their association with type 2 diabetes mellitus to 

evaluate whether fasting glucose is associated with coronary heart disease independently 

of diabetes might inadvertently lead to SNPs being selected on the basis of pleiotropy (as 

a fasting glucose SNP that is not associated with diabetes might associate with pathways 

that counterbalance the glucose association, such that the overall association of the SNP 

with diabetes is null)136. Therefore, an MR analysis using manually pruned SNPs in a 

genetic instrument can lead to findings that are very challenging to interpret.
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Box 4

New MR approaches

In contrast to conventional Mendelian randomization (MR), MR-Egger53 takes the 

approach of Egger regression137 (introduced in the context of small study bias evaluation 

in clinical trials) and allows the y-intercept to float, which achieves two outcomes. First, 

this flotation provides a statistical test for the presence of unbalanced horizontal 

pleiotropy; evidence that y is different to 0 when x = 0 is suggestive of the presence of 

unbalanced horizontal pleiotropy. Second, by absorbing the pleiotropic effects into the y-

intercept, MR-Egger can provide a reliable estimate for the underlying causal effect 

(when certain additional assumptions are satisfied53) from the slope of the regression 

line. Therefore, the advantages of MR-Egger are manifold, as it obviates the need for 

manual pruning of SNPs, the intercept can inform on the presence of unbalanced 

pleiotropy, and the slope can provide a valid causal estimate even in the presence of such 

pleiotropy (as long as certain conditions are met). One disadvantage of MR-Egger is that, 

for a given sample size, power is reduced compared with inverse variance-weighted MR, 

although newer extensions to MR-Egger, such as MR-Egger with SIMEX138, seek to 

increase power.

Holmes et al. Page 28

Nat Rev Cardiol. Author manuscript; available in PMC 2018 April 01.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



Each diamond represents a single SNP plotted so that the SNP to exposure estimate is on 

the x-axis and the SNP to outcome estimate is on the y-axis. Filled diamonds = non-

pleiotropic variants and open diamonds = pleiotropic variants. In MR using summary 

level data, the regression slope provides an estimation of the causal effect of the exposure 

on the outcome.
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Figure 1. Instrumental variable analysis to generate causal estimates through Mendelian 
randomization.
The three principles of instrumental variable analysis are: the instrumental variable (in this 

case a genetic variant either in isolation or in combination with other variants) must 

associate with the exposure; the instrumental variable must not associate with confounders 

that are either known or unknown (U); and there is no pathway from the single nucleotide 

polymorphism (SNP) to disease that does not include the exposure of interest. This figure is 

a schematic representation and should not be interpreted as a formal directed acyclic graph.
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Figure 2. Paradoxical scenarios in Mendelian randomization.
a | An example of MR using a pleiotropic variant. The genetic variant associates with 

multiple biomarkers on separate biological pathways. Generating separate causal estimates 

for biomarkers 1 and 2 is invalid as they ascribe the same single nucleotide polymorphism 

(SNP)–disease effect to each biomarker. Furthermore, if only one of the biomarkers is 

causal, then using the SNP to make causal inferences on the non-causal biomarker can 

generate an erroneous conclusion. b | An example of MR using a variant that disrupts 

normal function of the exposure. Possession of the genetic variant might lead to increased 

concentration of the exposure (for example, owing to impaired clearance), but paradoxically 

lead to an increased risk of disease (if the normal function of the biomarker would be 

protective of disease), or vice versa if the normal function of the biomarker increases risk of 

the disease. c | An example of MR involving biomarkers on the same pathway, in which the 

genetic variant encodes an enzyme that metabolizes a substrate into a metabolite. If the 

substrate and metabolite have contrasting roles in the development of diseases, this 

discrepancy might lead to complexity in the interpretation of findings. d | An example of 
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MR involving a time-dependent exposure. If the biomarker is causal for disease only during 

a critical time period, MR might show evidence of a protective effect. However, intervening 

on the biomarker during the noncritical time period will not alter risk of disease. e | An 

example of MR of a cumulative exposure, in which the exposure is causal for disease, but 

has a long latency. For example, the disease might typically present after decades of 

exposure-induced subclinical disease development. f | An example of MR involving 

overlapping traits. MR of overlapping biomarkers can lead to paradoxical findings as the 

overlapping nature of the traits might lead to a diminution of their apparent causal effect on 

multivariate analyses. These figures are schematic representations and should not be 

interpreted as formal directed acyclic graphs. U, unknown.
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Figure 3. Mendelian randomization using a genetic variant that associates with multiple 
biomarkers on separate pathways.
a | Using single nucleotide polymorphisms (SNPs) in PPM1K (which encodes a 

mitochondrial phosphatase that activates branched-chain α-keto acid dehydrogenase 

[BCKD], responsible for the rate-limiting step of metabolism of the branched-chain amino 

acids) to infer causality of three separate amino acids yields an erroneous conclusion, as this 

inference ascribes a causal estimate to each amino acid from the same PPM1K– diabetes 

association that is scaled to the PPM1K–amino acid estimate (TABLE 2). The three amino 
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acids are initially catabolized prior to the enzymatic action of BCKD. b | Using SNPs in 

APOE to infer causality of C-reactive protein (CRP) yields an erroneous conclusion, as the 

SNP is pleiotropic for CRP and LDL cholesterol (LDL-C). These figures are schematic 

representations and should not be interpreted as formal directed acyclic graphs. CHD, 

coronary heart disease.
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Figure 4. Mendelian randomization using a variant that disrupts normal function of the 
exposure.
a | Reduced hepatic uptake of HDL particles through the scavenger receptors leads to the 

accumulation of circulating HDL cholesterol (HDL-C) and increased risk of coronary heart 

disease (CHD). However, this observation does not indicate that HDL-C is harmful, but 

provides some support for the notion that appropriate function of reverse cholesterol 

transport might be beneficial to cardiovascular health. b | A variant in IL6R leads to reduced 

membrane-bound IL-6, which in turn results in increased levels of circulating IL-6, 
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disruption of classical IL-6 signalling, reduced C-reactive protein (CRP) levels, and a 

reduction in risk of CHD. These figures are schematic representations and should not be 

interpreted as formal directed acyclic graphs.
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Figure 5. Mendelian randomization of biomarkers on the same pathway.
a | Individuals who are homozygous for the ALDH2*1 variant can consume normal amounts 

of alcohol without symptoms of flushing and nausea, which can lead to increased alcohol 

intake and subsequent high blood pressure. However, because acetaldehyde is efficiently 

cleared by aldehyde dehydrogenase (ALDH2), the risk of oesophageal cancer is low. b | 

Individuals who are heterozygous for ALDH2*2 are likely to consume lower amounts of 

alcohol than those who are homozygous for the ALDH2*1 variant, given their symptoms of 

moderate flushing. This lower alcohol consumption leads to lower blood pressure. Reduced 

Holmes et al. Page 37

Nat Rev Cardiol. Author manuscript; available in PMC 2018 April 01.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



functioning of ALDH2 leads to increased acetaldehyde levels, which in turn results in 

increased risk of oesophageal cancer. c | Individuals homozygous for ALDH2*2 consume 

almost no alcohol, given the severe symptoms and, therefore, blood pressure levels are 

expected to be lower than in those who are heterozygous for ALDH2*2 or homozygous for 

the ALDH2*1 variant. Similarly, acetaldehyde levels in individuals homozygous for 

ALDH2*2 are also expected to be lower than in individuals heterozygous for the ALDH2*2 

variant, resulting in lower risk of oesophageal cancer (and similar to or lower than carriers of 

ALDH2*1*1, depending on alcohol consumption). These figures are schematic 

representations and should not be interpreted as formal directed acyclic graphs.
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Figure 6. Mendelian randomization of a time dependent and cumulative exposure.
a | The genetic variant-to-disease (multiple sclerosis) association reflects lifetime 

associations (including causal effects mediated through vitamin D that only occur during 

adolescence). Therefore, Mendelian randomization might provide evidence of a causal effect 

when this effect actually only occurs during a critical time period. b | The genetic variant 

alters the heparin-binding domain of extracellular superoxide dismutase (ecSOD), meaning 

that it cannot bind to the external membrane of endothelial cells, and cannot prevent nitric 

oxide (NO) from being degraded by superoxide anions. Less NO results in vasoconstriction 
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and increased risk of coronary heart disease (CHD). c | Genetic variants instrumenting LDL 

cholesterol (LDL-C) have large effects on risk of CHD. Given that CHD is a disease that 

develops over decades, the effect estimates are equivalent to the estimates that would be 

derived from lifelong lowering of LDL-cholesterol levels. These figures are schematic 

representations and should not be interpreted as formal directed acyclic graphs.
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Figure 7. Mendelian randomization of overlapping exposures.
As triglycerides (TGs) overlap with non-HDL cholesterol (non-HDL-C), adjusting the 

association of TGs with risk of coronary heart disease (CHD) for non-HDL-C diminishes the 

causal effect of TGs to null. By contrast, non-HDL-C contains the entire cascade of 

apolipoprotein B-containing lipoproteins, including intermediate-density lipoprotein 

cholesterol and LDL cholesterol, meaning that an association persists between non-HDL-C 

and CHD on adjustment for TGs. The attenuation of the TG–CHD association does not 

provide any information about the causality of TG, because it adjusts for an overlapping 

trait. This figure is a schematic representation and should not be interpreted as a formal 

directed acyclic graph.
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Table 1
Notable Mendelian randomization studies in cardiometabolic disease

Exposure Outcome Interpretation Importance Refs

Biomarkers and drug targets

BMI Metabolites BMI causally influences 
many circulating 
metabolites

Supports the interpretation that BMI may 
influence cardiometabolic disease through 
its influence on metabolites

139

HMGCR/Statins Metabolites Casual Shows consistency of observational data on 
statins vs predicted MR effects on 
metabolites

30

Adiposity (BMI and waist-
hip ratio)

CHD BMI and waist–hip ratio 
(adjusted for BMI) 
causally increases risk of 
CHD

No trial yet to show this causal 
relationship29

25–28

C-reactive protein CHD No causal relationship No trial of a therapy specific to CRP for 
CVD events has been conducted

22,23,50

LDL-C CHD Dose-response 
relationship irrespective 
of locus

Suggests LDL-cholesterol lowering by any 
means is beneficial, consistent with trials 
involving statin and other cholesterol-
lowering interventions19,21,108

15

HDL-C CHD No causal effect Contradicts observational data140, but 
supports findings from recent RCTs61–63

16–18

TGs CHD Causal Precedes trial data of a TG-lowering agent 16,18,141

sPLA2-IIA CHD Non-causal Published at a similar time to the VISTA-16 
trial33 of a sPLA2- IIA-lowering drug that 
did not have beneficial effects on CVD

32

Lp-PLA-IIA CHD Non-causal Many resources were spent on trials35,62 
that showed therapeutic lowering of Lp-
PLA2 level does not lower risk of CVD; 
some MR studies were published before the 
reporting of RCT results

34,36,37, 142

NPC1L1/Ezetimibe CHD Causal MR studies preceded RCT data143, that 
showed lowering of LDL-cholesterol level 
via inhibition of NPC1L1 results in reduced 
risk of CVD

39,144

PCSK9, Lipoprotein (a) and 
ANGPTL4

CHD Causal Drugs developed for CVD prevention on 
basis of genetic findings, some of which 
have since shown cardiovascular benefit in 
phase III RCTs145

146–148

LDL-C Diabetes Causal Suggests LDL-cholesterol lowering might 
generally lead to increased risk of diabetes 
mellitus, and has potential ramifications for 
drugs that lower LDL-cholesterol level

18

HMGCR/Statins Diabetes Causal Indicates that the (albeit small) diabetogenic 
effects of statins (that are outweighed by the 
cardiovascular benefits149) seen in RCTs 
are on-target150

31

PCSK9/PCSK9 inhibitors Diabetes Causal Suggests PCSK9 inhibition might increase 
risk of diabetes

40–42

Exogenous exposures

Alcohol Cardiovascular 
diseases 
(including blood 
pressure, 
coronary artery 
calcification and 
CHD)

Causal Suggests alcohol is harmful to 
cardiovascular health at all doses of 
consumption, contrary to decades of 
observational data6; findings are important 
for public-health policy151

24,83,152
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ANGPTL4, angiopoietin-related protein 4; CHD, coronary heart disease; CRP, C-reactive protein; CVD, cardiovascular disease; Lp-PLA2, 

lipoprotein-associated phospholipase A2; MR, Mendelian randomization; NPC1L1, Niemann–Pick C1-like protein 1; RCT, randomized, controlled 

trial; sPLA2-IIA, secretory phospholipase A2-IIA.
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