
 

 

GGSB PRELIM QUESTION # 9 
 
Identifying causal genes for complex traits 
 
Genome-wide association studies have been performed on a large number of complex traits. These have 
discovered thousands of loci robustly associated with the traits. These loci fall in non-coding regions of the 
genome, which makes mapping out the underlying mechanisms challenging. The general consensus is that 
GWAS variants alter gene expression traits and through this mechanism affect the phenotype. PrediXcan 
[Gamazon et al 2015] and subsequent methods such as TWAS [Gusev et al 2016] were proposed to test this 
hypothesis by correlating the genetically regulated components of gene expression with the phenotype. 
 
1. How can the genetic architecture of gene expression traits guide the optimal choice of prediction models 
used in these gene mapping methods. What kind of models would work best if the architecture is highly 
polygenic (many variants with small effect sizes affects gene expression) or very sparse (a few causal 
eQTLs)? 
 
  
Mendelian randomization (MR) methods use genetic variations of known effects as instruments to test the 
mediating role of intermediate variables (exposure, molecular traits) on phenotypes. For example, Voight et al 
[https://www.ncbi.nlm.nih.gov/pubmed/22607825] found strong evidence for a non-causal role of HDL 
cholesterol levels on cardiovascular events, contrary to the accepted wisdom of the benefits of “good 
cholesterol" for cardiovascular health. This negative result is consistent with the failure of clinical trials of drugs 
that target HDL cholesterol exclusively.  
 
3. Briefly describe the mendelian randomization (MR) method and its key assumptions.  
 
 

 
 
 
4. How can Predixcan be interpreted as a MR approach? 
 
5. What assumptions need to be satisfied to conclude that the association is causal?  



 

 

 
 
MR-Egger [Bowden et al] extends the applicability of MR by relaxing the requirement that there is no direct 
genetic effects and works well when there are multiple independent instruments (k=1:K). The phenotype here 
is modeled with a direct genetic effect 𝜸𝜸 (common for all k) and an indirect effect (β αk) as follows (with Xk 
representing the allelic dosage of SNP k)  

 
 

 
 
 
6. Write down the PrediXcan model with this notation and compare to MR Egger. 
 
 
7 What are the biological assumptions under which PrediXcan's simplifying assumptions would be 
justified? 
 
 
8. How would this approach work if only some of the eQTL affected the phenotype. How would you 
interpret biologically if this were the case? 
 
 
9. How do the following papers extend the PrediXcan framework.  
 
Barfield et al [https://www.biorxiv.org/content/early/2018/04/27/223263] 
Mancuso et al [https://www.biorxiv.org/content/early/2017/12/20/236869] 
Park et al [https://www.biorxiv.org/content/early/2017/12/01/219428] 
 
What are the assumptions that are dropped in each paper and under which biological assumptions would 
these make sense? 
 

https://www.biorxiv.org/content/early/2018/04/27/223263
https://www.biorxiv.org/content/early/2017/12/20/236869
https://www.biorxiv.org/content/early/2017/12/01/219428
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